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ABSTRACT 

Cellular manufacturing systems consider effective ways to increase the 

productivity of labor, materials, space, and time. In this way, the same 

machines are grouped into cells, which are then allocated to the family of 

similar parts. There are several ways to classify parts and cars in the cell. One 

of these methods is the use of a similarity coefficient. This new approach 

facilitates cell formation. This approach is divided into two stages. The first 

stage involves processing the sequence similarity coefficient presented in this 

article. In contrast, the second stage considers the number of repeat 

operations to identify parts with the maximum similarity, taking into account 

the family. In the second phase, a new mathematical model is presented, 

incorporating key operational aspects such as alternative routing, machine 

capacity, demand components, operational duration, and machine allocation 

to minimize costs across machine, operating, and transportation between 

cells. A performance test method, which had several issues identified in the 

literature, was tested and analyzed. 

1- Introduction 

Due to increasing global competition, a shortening product life cycle, changing market demand, 

and diverse customer needs, manufacturers are compelled to adopt technologies that enhance 

production system efficiency, optimize the use of existing facilities, and keep pace with market 
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changes. Therefore, they have shifted their production systems from mass production to hybrid 

production systems so that they might keep up with a quickly changing market. 

To adapt to such a transition, their production systems must be more efficient and flexible.  

Group technology is a manufacturing philosophy that enables the economic production of both 

small batch production and mass production. The technology encompasses the same elements in 

the same manner, including product design, process planning, manufacturing, and assembly. 

Cellular Manufacturing System (CMS) is a type of GT application that divides machines into 

machine groups and parts into part families, assigning production cells to related groups and 

families to minimize inter- and intra-cell movements and unnecessary costs. 

Cellular manufacturing is a lean manufacturing approach that integrates the high flexibility of 

individual production with the high efficiency of mass production, thereby reducing the cost of 

individual production and the rigidity of mass production.  

In the design of a CM system, similar parts are grouped into families and associated machines into 

groups so that one or more-part families can be processed within a single machine group.  

In general, CMS offers efficiency, flexibility, high order, and independence, which enhance 

quality, optimize the use of space, manpower, and machinery, and reduce labor costs, material 

transportation costs, and material inventory during construction. 

Currently, an increasing number of researchers and enterprise managers are focusing on the 

importance of efficiency, flexibility, self-discipline, and independence in cellular manufacturing, 

leading to remarkable achievements. Cellular manufacturing is typically viewed as the problem of 

identifying a set of parts that a group of machines can process. This identification is called cell 

formation (CF).  

 The CF problem aims to assign machines into machine groups and parts into part families and 

determine manufacturing cells with the corresponding machine group and part family. The CF 

must consider various strategic-level operational issues, including machine capacity, machine cost, 

operation sequence and routing, material handling cost, and overall operation cost. Furthermore, a 

meaningful cellular manufacturing system is necessary to align with operational objectives, 

including high machine utilization, minimal work in process, and optimal workload balance. 

Therefore, CF can be used to shorten lead time, reduce work in process, improve productivity, 

simplify scheduling, and reduce logistics time and cost in the cellular manufacturing system. 
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Since CF was first asserted by Burbidge in 1971, minimizing intercellular movement times, 

distances, machine costs, operation costs, and the number of exceptional parts and machines 

(where parts or machines are assigned to more than one cell for processing) are common design 

objectives. 

There are three strategies used to form manufacturing cells in existing CF design methods. 

 Cell formation (CF), the layout group (GL), and the Planning Group (PG) are three important 

steps in the production of cells [2]. Among them, CF is primarily [7] and is a key step in the per-

cell production problem [8]. Cell formation involves the same processes that identify the required 

family of parts and assign them to cells associated with the processing machinery [1], [2], 

[7]. Ideally, each cell producing cells should act as an independent production unit. CF approach 

to eliminate/minimize the transcell costs between the parts. [5], [6], [9-12]. 

To achieve the objectives, various CF techniques have been proposed in existing literature. The 

main techniques include classification and coding systems, mathematical and heuristic approaches, 

similarity coefficient-based clustering methods, graph theoretic methods, fuzzy clustering 

methods, evolutionary approaches, and neural network approaches, among others.  

While more realistic and effective methods can be developed considering the flexibility of the 

manufacturing data and the different products involved, among the CF-based methods, the 

similarity coefficient technique is more flexible and easier to implement [8]. McAuley is the first 

researcher to use SCM for machine cell grouping [13-17]. 

McAuley [8] introduced the Jaccard similarity coefficient to measure the similarity between each 

pair of machines and then to group the machines within a cell based on their similarity measure. 

Although many factors of similarity of parts or machines have been considered in previous 

research, few of them address both the factors of operation sequence and the number of repetitions 

of operations simultaneously. In many practical manufacturing systems, it is natural for parts to 

meet machines more than once [18-19]. The sequence of operations, including repeated ones, 

considers both the machine's requirements and the material flow. These factors are influential in 

evaluating the similarity coefficient of parts/machines. Also, the combination of important 

properties such as production volume, operation sequence, cost/time of movements between cells, 

alternative process plans (routing flexibility), identical machines, and sequence of operations of 

parts (operation flexibility), which are used to apply direct and indirect relationships between 

machines, is not considered in the previous similarity coefficients. In this paper, a mathematical 
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programming model is employed to assign a family of similar parts to machines in a cell. This 

model considers both the similarity coefficient and the sequence of operations, as well as the 

number of repetitions of operations, to identify the family of parts with the maximum degree of 

similarity. It also discusses past research that is deeply related to this research. 

The machine components in the cell are identified using two different similarity coefficients to 

determine the similarity between parts and used machines. The framework of the remainder of the 

content is organized as follows: Section 2 describes the two-phase procedure of the proposed new 

approach. In Section 3,  one example is presented to illustrate that the new approach is efficient 

and feasible. Conclusions and future research are provided in Section 4. 

2-Problem description and model 

This section is devoted to explaining the two-phase methodology mentioned above. Phase I 

involves identifying part families using the improved similarity coefficient method. Phase II 

presents a decomposed model for assigning machines to part families under multi-objective design. 

Before the description of the two-phase methodology, the notations used throughout this research 

are listed in Table 1. 

2.1 Notations and Symbols 

Table 1: Notation of the two-phase method 

Index Description 

 𝑖′, 𝑖 = {1,…… . . , 𝐼} Index of parts 

j={1,…….,J} Index of machines 

c={1……., C} Index of cells 

op={1……, OP} Index of operations 

k={1….,𝐾𝑖} Operation sequence number of parts i 

t={1….,𝑛𝑖
𝑜𝑝

} Index of operations op for part i 

𝑡′={1….,𝑛
𝑖′  

𝑜𝑝
 } Frequency of operation op process part 𝑖′   

 

Parameters Description 

ropi
t  Sequence number of part i, is processed by operation op in the (t) time 

ropi′
t  Sequence number of part j, is processed by operation op in the (t) time 

a
ii′
op

 1, if operation op processes both part i and i 
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Parameters Description 

 0, otherwise 

b
ii′
op

 1, if operation op process part i, but does not process part i′ 

 0, otherwise 

c
ii′
op

 1, if operation op process part 𝑖′ but does not process part i 

 0, otherwise 

d
ii′
op

 1, if operation op processes neither part i nor i′ 

 0, otherwise 

νi  Demand of part i 

hi Material inter-cell movement cost for per unit part i 

cj Cost of machine j 

Cj Available capacity of machine j 

sj Operation cost of machine j for unit time 

tijk Operation time of kth operation of part i on machine j 

Yic 1, if part i is assigned into cell c 

 0, otherwise 

bijk 
1, if operation k of part i is performed on machine j 

 0, otherwise 

Variables Description 

𝑆𝑖𝑖′  Improved similarity coefficient between part i and i′ 

𝑢𝑖𝑗𝑘 1, if operation k of part i is performed on machine j in cell c, otherwise; 0 

𝑁𝑖𝑐 Number of machine j will be assigned into cell c 

𝑟𝑖𝑐 Surplus capacity of exceptional machine j in cell c 

𝑤𝑗𝑐 
Wjc Minimum inter-cell movement cost induced by removing exceptional 

machine j, which is utilized incompletely 

𝑉𝑖𝑘𝑐 Quantity of part i processed by operation k for the Wjc 

𝑎𝑗𝑐 1, if the incompletely utilized exceptional machine j is assigned to cell c 

 0, otherwise 

𝑄𝑗𝑐 Minimum utilization of exceptional machine j in cell c 
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Variables Description 

𝑓𝑖𝑗𝑘𝑐 
Additional quantity of part i, whose operation k will be performed by 

exceptional machine j, transferred to cell c from another cell 

2.2-Phase I—an improved similarity coefficient method 

For part family identification, SCM has been widely applied to the CF problem, as shown in 

Section 2. The similarity coefficient is a value that ranges from 0 to 1, representing the relationship 

between two-part types/machine types. The two-part types/machine types will be more similar if 

the value of the similarity coefficient is larger, and vice versa.  

Based on similarity measurement, parts and machines can be grouped using a cluster algorithm. 

The improved SCM innovatively considers the operation sequence and the number of repeat 

operations simultaneously for part family identification in this phase. The operation sequence of 

parts is an ordering of operations in the manufacturing system, just as the serial number for each 

part column in Table 2. A similar operation sequence between two parts can lead to a high 

similarity coefficient between them. Meanwhile, it is generally known that repeated operations 

widely exist in the real-world manufacturing environment. Repeated operation means a part needs 

the same operation more than once, as indicated by multiple figures in the elements of Table 2. 

 We believe that the number of repeated operations will significantly influence the similarity of 

parts. Before applying the similarity coefficient measure, an optimized design will be implemented 

to group parts preliminarily according to the inclusion relationships of operation sequences, 

thereby reducing the problem size. The detailed steps of phase I are as follows: 

Step 1: Attain the part-operation incidence matrix from production. 

A simple example is used to demonstrate the part operation incidence matrix in Table 2. In the 

example, the production system consists of four parts and four operations.  

Table 2: Part operation incidence matrix 

Operation 
Part 

Part 1 Part 2 Part 3 Part 4 

1 1.3 1.3 0 0 

2 2 2 1 0 

3 0 4 2 1 

4 0 0 3 2 
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Numbers in the matrix represent the operation sequences of each part. Notably, elements with 

multiple numbers represent repeated operations of parts; specifically, part P1 and part P2 are 

performed by operation op1 twice, at the first and third processes. And the element "0" means a 

part does not need the corresponding operation. 

Step 2: Group parts to reduce the problem size. 

Step 2.1 Check all the elements of the part-operation incidence matrix. 

Step 2.2 Find out all inclusion relations of operation sequences between any pair of parts. In the 

example of step 1, parts P1 and P2 can be merged into one group because the operation sequence 

of P1 is contained in P2. In some cases, if the operation sequence of a part is contained in two or 

more parts, the one with the shortest operation sequence should be chosen to form a group. If ties 

are happening, random selection is a general approach. 

Step 2.3 Treat group members as a single entity to obtain the new part-operation incidence matrix. 

The resulting composite operation sequence is always the longer sequence of the group members. 

Therefore, the operation sequence of the group of P1 and P2 conforms to P2 in the example.   

Step 2.4 Back to step 2.1 until no inclusion relations can be found. 

Step 3: Calculate the similarity coefficient based on the grouped part-operation incidence matrix.  

We deem that parts will have higher similarity if they are performed at more similar operation 

sequences. If not, the correlation would be lower relatively. In this sense, the operation sequence 

ratio 𝑂𝑆𝑅𝑖𝑖′ between parts i and i′ is defined as follows: 

𝑂𝑆𝑅𝑖𝑖′ =
∑ (∝

𝑖𝑖′
𝑜𝑝.𝑊

𝑖𝑖′
𝑜𝑝).𝑂𝑃

𝑜𝑝=1

2.∑ [∝𝑖𝑖′
𝑜𝑝.max (𝑛i

𝑜𝑝,𝑛𝑖′
𝑜𝑝)] 𝑂𝑃

𝑜𝑝=1
            (2) 

{
 
 
 
 
 
 

 
 
 
 
 
 

∝𝑖𝑖′
𝑜𝑝= 0,  𝑊𝑖𝑖′

𝑜𝑝 = 0 

∝𝑖𝑖′
𝑜𝑝= 1, 𝑛i

𝑜𝑝 ≥ 𝑛𝑖′
𝑜𝑝 ⇒  𝑊𝑖𝑖′

𝑜𝑝 = ∑ 𝑟𝑜𝑝𝑖
𝑡  𝑟𝑜𝑝𝑖′

𝑡′

𝑛i
𝑜𝑝

𝑡=1

𝑟𝑜𝑝𝑖
𝑡  𝑟𝑜𝑝𝑖′

𝑡′ = {2     𝑖𝑓   𝑟𝑜𝑝𝑖
𝑡 = ∀  𝑟𝑜𝑝𝑖′

𝑡′ ,   𝑡′ = 1,2, … , 𝑛𝑖′
𝑜𝑝

1                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∝𝑖𝑖′
𝑜𝑝= 1, 𝑛i

𝑜𝑝 < 𝑛𝑖′
𝑜𝑝 ⇒  𝑊𝑖𝑖′

𝑜𝑝 = ∑ 𝑟𝑜𝑝𝑖
𝑡  𝑟𝑜𝑝𝑖′

𝑡′

𝑛
𝑖′
𝑜𝑝

𝑡′=1

𝑟𝑜𝑝𝑖
𝑡  𝑟𝑜𝑝𝑖′

𝑡′ = { 2     𝑖𝑓   𝑟𝑜𝑝𝑖
′
𝑡′ = ∀  𝑟𝑜𝑝i

t,   𝑡′ = 1,2, … , 𝑛i
𝑜𝑝

1                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The number of repeated operations is another crucial factor for improving the similarity coefficient 

method. RMC is a commonly used similarity coefficient for the CF problem and was presented by 

Islam and Sarkar [3]. Currently, few researchers focus on how the number of repeated operations 

affects parts similarity, as illustrated below. 

𝑆𝑖𝑖′ =
𝑎𝑖𝑖′ +√𝑎𝑖𝑖′.𝑑𝑖𝑖′  

𝑎𝑖𝑖′ + 𝑏𝑖𝑖′ + 𝑐𝑖𝑖′ + 𝑑𝑖𝑖′ +√𝑎𝑖𝑖′.𝑑𝑖𝑖′  
  (3) 

𝑎𝑖𝑖′ = ∑ 𝑎𝑖𝑖′ 
𝑜𝑝. 𝑛i

𝑜𝑝.

𝑂𝑃

𝑜𝑝=1

𝑛𝑖′ 
𝑜𝑝  

𝑏𝑖𝑖′ = ∑ 𝑏𝑖𝑖′ 
𝑜𝑝. 𝑛i

𝑜𝑝

𝑂𝑃

𝑜𝑝=1

  

𝑐𝑖𝑖′ = ∑ 𝑐𝑖𝑖′ 
𝑜𝑝.

𝑂𝑃

𝑜𝑝=1

𝑛𝑖′ 
𝑜𝑝  

𝑑𝑖𝑖′ = ∑ 𝑑𝑖𝑖′ 
𝑜𝑝

𝑂𝑃

𝑜𝑝=1

  

Finally, the improved similarity coefficient, which considers both the operation sequence and the 

number of repeated operations simultaneously, can be attained by combining formulas (1) and (2). 

𝑆𝑖𝑖′ = 𝑂𝑆𝑅𝑖𝑖′ . 𝑠𝑖𝑖′  (4) 

Step 4: Form part families using the cluster algorithm. 

This step utilizes the P-median model, which was proposed by Kusiak [6], to form part families 

based on the result of the similarity coefficient. The objective of this model is to optimally identify 

part families by maximizing the similarity coefficient between parts in each family. 

3.2 Phase II—a mathematical model for machine assignment 

Phase II presents a new mathematical model to assign machines to part families identified in phase 

I. This model decomposes the complicated multi-objective CF problem into several  simple 

subproblems, making it easier to explain and compute. 

The first step involves identifying operation routing and the required machines, considering part 

demand and machine capacity constraints, to form machine groups that minimize both machine 

and operation costs. Exceptional machines can be judged in this step. 

They are the machines required by multiple part families, whereas only one part family needs non-

exceptional machines. To meet part of the demand, assignment of non-exceptional machines is 
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supposedly fixed, even if their utilization will be low. However, the surplus capacity of exceptional 

machines in different cells can be merged by material inter-cell movement. Therefore, the second 

and third sub-problems are to decide how to merge the surplus capacity of exceptional machines 

that cannot be utilized fully. The decision is based on the minimum investment required for 

material inter-cell movement and exceptional machines. In the third step, we assign a weight q to 

determine the relative importance of intercell movement versus exceptional machine duplication 

for CF. q=0means inter-cell movement is not needed in the manufacturing system, and we refer to 

it as an "independent cell system." q=1 means exceptional machines should be required as few as 

possible in the manufacturing system; some parts can be transferred among cells for related 

operations, and we refer to them as a " dependent cell system. Furthermore, the last step is to 

determine the production planning of parts among cells under optimum machine utilization and 

workload balance. The problem is formulated according to the following assumptions:  Each part 

has several operations that must be processed in a specific sequence. 

• The processing time of the operation for each part is known. 

• The part demand is known. 

• The operation routing of some parts is an alternative. 

• The cost, capacity, and operational cost of each machine are known. 

• The inter-cell movement cost of each part is known, regardless of distance. 

• Some machines are multipurpose, and repeated operations are in the manufacturing system. 

• Intra-cell movement is ignored. 

• Lower and upper bounds of cells are not limited. 

• Each operation can be assigned to one machine. 

• The part demand should be satisfied totally. 

According to the problem assumptions above and notations given in Table 1, the objective 

functions and constraints of the decomposed model are described below. 

To determine operation routing and the required machine in some real-life manufacturing systems, 

operations can be performed by more than one machine, allowing for alternative operation routing. 

Therefore, it is necessary to select operation routing based on the minimum machine cost and 

operation cost. The purpose of the objective function (4) in the following integer programming 

model is to determine the machine type and quantity for each part family and form independent 

cells. Moreover, the result can tell us which machines are exceptional. 
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𝑀𝑖𝑛 =∑∑𝑐𝑗. 𝑁𝑗𝑐 +∑∑∑∑𝑌𝑖𝑐. 𝜈𝑖 . 𝑡𝑖𝑗𝑘. 𝑠𝑗 . 𝑢𝑖𝑗𝑘𝑐 

𝐾𝑖

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝐶

𝑐=1

𝐶

𝑐=1

𝐽

𝑗=1

  (4) 

Subject to:   

∑∑𝑏𝑖𝑗𝑘. 𝑢𝑖𝑗𝑘𝑐 = 1

𝐽

𝑗=1

𝐶

𝑐=1

 ∀𝑖, 𝑘 (5) 

        𝑢𝑖𝑗𝑘𝑐 ≤ 𝑏𝑖𝑗𝑘 ∀𝑖, 𝑗, 𝑘, 𝑐 (6) 

∑ ∑ 𝜈𝑖 . 𝑡𝑖𝑗𝑘. 𝑢𝑖𝑗𝑘𝑐
𝑘𝑖
𝑘=1

𝐼
𝑖=1

𝐶𝑗 . 𝑁𝑗𝑐
≤ 1 ∀𝑗, 𝑐 (7) 

     𝑁𝑗𝑐 > 0 , 𝑎𝑟𝑒 (0,1) 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ∀𝑗, 𝑐 (8) 

      𝑢𝑖𝑗𝑐 , 𝑎𝑟𝑒 (0,1) 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ∀𝑗, 𝑐 (9) 

Constraints (5) and (6) guarantee that each operation of each part is assigned to only one machine 

in one cell. 

Constraint (7) ensures that machine capacities are not 

exceeded. Constraints (8) and (9) represent the binary and non-negativity integer requirements on 

the decision variables. 

Step 2: To calculate the minimum material inter-cell movement cost 

Normally, some machines cannot be utilized 

completely in cells. The non-exceptional machine assignment is fixed to meet part demand. 

Nevertheless, it is possible to optimize surplus capacities of exceptional machines by material 

inter-cell movement among different cells. 

The optimized capacity allocation can reduce the demand for exceptional machines while also 

increasing machine utilization. However, inter-cell movement cost will inevitably be induced. wjc 

is the minimum inter-cell movement cost caused by cutting relevant exceptional machine j, which 

is not fully utilized, from cell c. 

𝑀𝑖𝑛 =∑ ∑ 𝑊𝑗𝑐
𝑗𝜖𝐸𝑀

𝐶

𝑐=1

  (10) 

Subject to:   
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𝑊𝑗𝑐 = ∑∑ℎ𝑖 . 𝑉𝑖𝑗𝑘𝑐

𝐾𝑖

𝑘=1

𝐼

𝑖=1

. 𝑢𝑖𝑗𝑘𝑐  ∀𝑗 ∈ 𝐸𝑀, 𝑐 (11) 

𝑟𝑗𝑐 = 𝑁𝑗𝑐 −
∑ ∑ 𝜈𝑖. 𝑡𝑖𝑗𝑘. 𝑢𝑖𝑗𝑘𝑐

𝐾𝑖
𝑘=1

𝐼
𝑖=1

𝐶𝑗
  ∀𝑗 ∈ 𝐸𝑀 (12) 

∑∑𝑡𝑖𝑗𝑘

𝑘𝑖

𝑘=1

. 𝑉𝑖𝑗𝑘𝑐

𝐼

𝑖=1

. 𝑢𝑖𝑗𝑘𝑐 = (1 − 𝑟𝑗𝑐). 𝐶𝑗 ∀𝑗 ∈ 𝐸𝑀, 𝑐 (13) 

𝑢𝑖𝑗𝑘𝑐 . 𝑉𝑖𝑗𝑘𝑐 < 𝜈𝑖 ∀𝑖, 𝑗 ∈ 𝐸𝑀, 𝑘, 𝑐 (14) 

𝑉𝑖𝑗𝑘𝑐 > 0 , 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∀𝑖,   𝑗 ∈ 𝐸𝑀, 𝑘 , 𝑐 (15) 

EM is the set of exceptional machines. The objective function of Eqs. (10) and (11) account for 

minimizing inter-cell movement cost. Constraint (12) shows the calculation of rjc, which is the 

surplus capacity of the exceptional machine j in cell c. 

Constraint (13) is to guarantee that the variable Vijkc accords with the surplus capacity of the 

exceptional machine j in cell c. 

Constraint (14) ensures Vijkc cannot exceed part demand. 

Constraint (15) is the non-negativity integer requirement. 

Step 3: Determine if the exceptional machine, j, should be assigned to cell c, even if it is not fully 

utilized. Obviously, if the cost savings by cutting machines are less than the accompanying 

material inter-cell movement cost, the machine cutting will be irrational. Otherwise, it is feasible. 

Max=∑ ∑ [(1 − 𝑞).𝑊𝑗𝑐 − 𝑞. 𝑐𝑗]. 𝑎𝑗𝑐  𝑗∈𝐸𝑀
𝐶
𝑐=1   (16) 

Subject to:   

∑ (1 − 𝑟𝑗𝑐)
𝐶
𝑐=1

∑ 𝑎𝑗𝑐
𝐶
𝑐=1

≤ 1 ∀𝑗 ∈ 𝐸𝑀 (17) 

𝑞 = {0 𝑜𝑟 1}  (18) 

 𝑎𝑗𝑐   , 𝑎𝑟𝑒 (0,1) 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠          ∀𝑗 ∈ 𝐸𝑀, 𝑐 (19) 

The objective function of Eq. (16) means the potential benefit caused by assigning exceptional 

machine j, which is not fully utilized to cell c. Constraint (17) specifies that the final utilization of 

each machine is covered by its capacity. 

Constraint (18), (19) is the limitation of the user-specified weight q. 

Step 4: To distribute extra parts caused by the merging machine capacity 
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The extra parts will become available if some exceptional machines are cut down due to the merger 

of machine capacities. They should be transferred to other cells to meet the total demand. 

Thereby, the last sub-problem is to determine the type and quantity of parts that should be 

transferred to each cell. The lot splitting design is based on optimizing utilization and minimizing 

workload imbalance of exceptional machines across different cells. 

Min= ∑
max
𝑐∈𝐶

𝑄𝑗𝑐

∑ 𝑄𝑗𝑐
𝐶
𝑐=1

∀ 𝐽∈𝐸𝑀   (20) 

subject to:   

𝑄𝑗𝑐 = 𝑎𝑗𝑐.(1-𝑟𝑗𝑐 +
∑ ∑ 𝑓𝑖𝑗𝑘𝑐.𝑡𝑖𝑗𝑘

𝑘𝑖
𝑘=1

𝐼
𝑖=1

𝐶𝑗
)  (21) 

if  
∑ 𝑟𝑗𝑐
𝐶
𝑐=1

∑ 𝑎𝑗𝑐.𝑟𝑗𝑐
𝐶
𝑐=1

> 1 𝑎𝑛𝑑 ∑ 𝑎𝑗𝑐 ≠ 1  𝐶
𝑐=1  ∀𝑗 ∈ 𝐸𝑀, 𝑐 (22) 

𝑄𝑗𝑐 = 𝑎𝑗𝑐.(1- 𝑟𝑗𝑐);   𝑖𝑓 
∑ 𝑟𝑗𝑐
𝐶
𝑐=1

∑ 𝑎𝑗𝑐.𝑟𝑗𝑐
𝐶
𝑐=1

= 1  ∀𝑗 ∈ 𝐸𝑀, 𝑐 (23) 

∑𝑓𝑖𝑗𝑘𝑐 = 𝑉𝑖𝑗𝑘𝑐 

𝐶

𝑐=1

 ∀𝑖, 𝑗 ∈ 𝐸𝑀, 𝑘 , 𝑐 (24) 

∑∑𝑓𝑖𝑗𝑘𝑐 . 𝑡𝑖𝑗𝑘 < 𝑟𝑗𝑐

𝐾𝑖

𝑘=1

. 𝐶𝑗

𝐼

𝑖=1

 ∀𝑗 ∈ 𝐸𝑀, 𝑐 (25) 

𝑓𝑖𝑗𝑘𝑐 > 0 , 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∀𝑖, 𝑗 ∈ 𝐸𝑀, 𝑘, 𝑐 (26) 

The objective function expressed by Eq. (20) minimizes the total workload imbalance of 

exceptional machines in each cell. Equations (21)– (23) are to calculate the final utilization of 

exceptional machine j in cell c.  Constraint (24) ensures the transferred part and amount as 

requested by step 3. Constraint (25) indicates that added parts from other cells do not exceed the 

capacity of exceptional machine j in cell c. 

3- Computational experiments 

In this example, we consider 11-part types and 10 different types of machines. All the part types 

and machine types are to be grouped into three cells. 

Nine operation types are needed among the 11-part types in the experimental manufacturing 

system, as shown in Table 3. A series of sequential operations processes each part. It is worth 

noting that some parts include repeated operations in their operation sequence. In part P1, both the 

third and fifth operations are processed by operation Op3. 



Azadeh Rasouli International Journal of Sustainable 

Applied Science and Engineering 
 

13 

Table 3: Part operations incidence matrix 

Part 

Operation P
a
rt

1
 

P
a
rt

2
 

P
a
rt

3
 

P
a
rt

4
 

P
a
rt

5
 

P
a
rt

6
 

P
a
rt

7
 

P
a
rt

8
 

P
a
rt

9
 

P
a
rt

1
0

 

P
a
rt

1
1

 

Op1 1   1  1     1 

Op2 2 1 1 2 1 2 2 1 2   

Op3 3, 5  2 3, 5  3      

Op4 4 2,4 3  2  1,3  1 1, 3 3 

Op5  3  4 3   2,4    

Op6 6 5      3, 5    

Op7  6     4 6  2, 4 2 

Op8       5   5  

Op9          6  

Based on the rule of step 2 in phase I, part groups are identified as shown in Table 4. Hence, the 

number of part types could be reduced to 8 from 11. 

Table 4: part groups 

Part 

Operation 

PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 

P1 P2(P5) P3 P4(P6) P7(P9) P8 P10 P11 

Op1 1   1(1)    1 

Op2 2 1(1) 1 2(2) 2(2) 1   

Op3 3, 5  2 3, 5(3)     

Op4 4 2, 4(2) 3  1, 3(1)  1, 3 3 

Op5  3(3)  4  2, 4   

Op6 6 5    3, 5   

Op7  6   4 6 2, 4 2 

Op8     5  5  

Op9       6  

According to the similarity coefficients, we can identify part families by the P-median model. 

Table 5: similarity coefficient 

 PG2 PG3 PG4 PG5 PG6 PG7 PG8 

PG1 0.3086 0.2857 0.6306 0.2701 0.1886 0.1273 0.2681 
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 PG2 PG3 PG4 PG5 PG6 PG7 PG8 

PG2  0.3077 0.1538 0.3153 0.4837 0.2874 0.2308 

PG3   0.2400 0.3201 0.2146 0.2481 0.2727 

PG4    0.1945 0.2667 0 0.2329 

PG5     0.1540 0.6048 0.3201 

PG6      0.1333 0.1073 

PG7       0.4000 

part family 1— {P1, P4, P6}, 

 part family 2— {P2, P5, P8},  

part family 3— {P3, P7, P9, P10, P11} 

After part family identification, the next step is to assign machines into corresponding families so 

as to form manufacturing cells. 

Tables 6–10 present input data generated randomly within the ranges of data found in most 

published articles and case studies, showing that there are 10 machine types to perform nine 

operations in the given manufacturing system. 

Computational experiments in the method are operationalized using software on a PC with a 2.94-

GHz processor and 2 GB of memory. 

Table 6: Assign machines to operations 

Machine/ 

Operation 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Op1 1          

Op2 1 1         

Op3      1     

Op4   1        

Op5    1 1      

Op6        1   

Op7    1   1    

Op8         1  

Op9          1 

The element "1" indicates that the corresponding machine is capable of operating. 
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Table 7: machine information 

Machine j 
Machine cost Machine capacity Machine operation 

cj ($) Cj (min) cost sj ($) 

M1 1300 1224 1.1 

M2 1500 1224 1.3 

M3 1150 1224 1.3 

M4 1600 1224 1.0 

M5 1100 1224 1.2 

M6 1800 1224 1.5 

M7 1500 1224 0.6 

M8 1000 1224 1.1 

M9 1100 1224 1.1 

M10 1250 1224 1.2 

Table 8: Operation sequence, time 

Part i 
Operation 

number Ki 
Operation data 

Operation sequence 

1 2 3 4 5 6 

P1 6 

Machine j M1 M1/M2 M6 M3 M6 M8 

Processing 

time tijk (min) 
0.5 0.9/0.7 1.2 1.0 1 0.8 

P2 6 

Machine j M1/M2 M3 M4/M5 M3 M8 M4/M7 

Processing 

time tijk (min) 
1.0/1.2 0.8 0.4/0.6 0.8 1.3 1.4/1.3 

P3 3 

Machine j M1/M2 M6 M3    

Processing 

time tijk (min) 
1.0/1.2 0.8 1.5    

P4 5 

Machine j M1 M1/M2 M6 M4/M5 M6  

Processing 

time tijk (min) 
0.7 1.2/0.9 1.3 0.9/1.1 1  

P5 3 Machine j M1/M2 M3 M4/M5    
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Part i 
Operation 

number Ki 
Operation data 

Operation sequence 

1 2 3 4 5 6 

Processing 

time tijk (min) 
0.8/1.1 1.0 1.2/1.4    

P6 3 

Machine j M1 M1/M2 M6    

Processing 

time tijk (min) 
1.1 1.5/1.3 1.5    

P7 5 

Machine j M3 M1/M2 M3 M4/M7 M9  

Processing 

time tijk (min.) 
0.9 1.4/1.2 0.9 1.3/1.7 2.2  

P8 6 

Machine j M1/M2 M4/M5 M8 M4/M5 M8 M4/M7 

Processing 

time tijk (min) 
0.8/0.8 1/1.4 1.0 0.6/0.9 1.3 1.6/1.1 

P9 2 

Machine j M3 M1/M2     

Processing 

time tijk (min) 
1.0 1.5/1.3     

P10 6 

Machine j M3 M4/M7 M3 M4/M7 M9 M10 

Processing 

time tijk (min) 
1.0 1.6/1.3 0.8 1.6/0.9 1.9 2.1 

P11 3 

Machine j M1 M4/M7 M3    

Processing 

time tijk (min) 
0.9 1.4/1.6 1.2    

Table 9: Part demand 

Demand—vi 

Parts 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

500 400 550 500 700 600 800 1000 450 500 550 

Material inter-

cell movement cost hi ($) 
0.7 1.0 0.5 0.7 0.5 1.0 0.7 0.7 1.1 0.5 1.0 
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Table 10: Machine quantity in each cell 

Machine 
 

Cell 

Cell 1 Cell 2 Cell 3 Total 

M1 2 2 3 7 

M2 1 0 0 1 

M3 1 2 4 7 

M4 1 3 2 6 

M5 0 0 0 0 

M6 3 0 1 4 

M7 0 1 1 2 

M8 1 3 0 4 

M9 0 0 3 3 

M10 0 0 1 1 

Table11: Minimum utilization of exception 

Exceptional Independent cell Dependent cell 

machines system (q=0) system (q=1) 

M1 0.32 0.76 

M3 0.09 1 

M4 0.37 0.71 

M6 0.36 0.93 

M7 0.9 0.9 

M8 0.3 0.63 

Table 12: Maximum workload imbalances of exceptional machines 

Exceptional 
Independent 

cell 

Dependent 

cell 

machines system (q=0) system (q=1) 

M1 0.68 0.24 

M3 0.91 0 

M4 0.63 0.29 

M6 0.64 0.07 
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M7 0.21 0.21 

M8 0.7 0.37 

Table 13: Comparison between independent and dependent cell systems 

Machine cost ($) 

Independent Dependent 
Improvement 

cell system cell system 

(q=0) (q=1)  

47,000 39,000  

Inter-cell movement 0 1049  

Total cost ($) 47,000 40,049 14.8 % 

System utilization 73.6 % 90.1 % 16.5 % 

This section evaluates the performance of independent and dependent cell systems formed by 

applying the proposed algorithm to the experiment. 

In the independent cell system (q=0), despite the absence of material inter-cell movements, some 

machines' utilization is so low that a significant amount of capacity will be wasted. In the 

dependent cell system (q=1), parts are transferred between cells, allowing for the elimination of 

underutilized machines and improving overall machine utilization. Not only that, but it also 

decreases the workload imbalance of exceptional machines, as shown in Table 13. However, just 

like the two sides of a seesaw, the increase in material inter-cell movement cost is the price of the 

benefits. The cost of the machine is reduced sharply, but the inter-cell movement cost is increased 

as a trade-off. It is a relief that the total cost of both has dropped by 14.8%. Moreover, system 

utilization in the dependent cell system is enhanced by 16.5 %. By eliminating superfluous and 

underutilized machines from the manufacturing system, a more reasonable workload assignment 

can be achieved among cells. 

4- Conclusions and future research 

In this paper, a two-phase approach was proposed for CF in the cellular manufacturing system. In 

the first phase, an improved SCM was presented for identifying part families. The main difference 

of the improved method from existing research is that the operation sequence and the number of 

repeated operations are considered simultaneously in part similarity measurement. Based on the 

similarity coefficients, the part family identification would serve as the foundation for the next 

phase. In the second phase, a decomposed mathematical model was presented, considering various 

crucial operational aspects such as machine cost, operation cost, inter-cell movement cost, 
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alternative routing, part demand, processing time, lot splitting, and machine available capacity, to 

assign machines into part families. The model decomposes the NP-complete problem into several 

simple sub-problems, thereby facilitating the cell formation problem and reducing computational 

efforts. The ultimate aim of the two-phase approach is to form promising manufacturing cells with 

minimum machine investment, operation cost, and inter-cell movement cost, as well as maximum 

machine utilization and workload balance. 

It also leads to effective production scheduling with optimum system utilization in the complex 

cellular manufacturing system. Moreover, to reduce problem size, our model focuses on 

exceptional machines rather than all the mentioned machines. Computational experiments 

demonstrated that significant cost savings and system utilization improvements can be achieved 

by considering the trade-off between machine duplication and material inter-cell movement. To 

continue the research direction outlined in this paper, two major directions are suggested. First, 

the proposed method in our research was confirmed by some small-scale problems 

, but its limitation is that a long computational time will be needed for solving large-scale problems. 

Therefore, future work will focus on developing metaheuristics to solve the proposed problem with 

more reasonable computational efforts. Furthermore, we will consider additional variables such as 

layout design, cross-trained workers, and setup time in the applied CF problem. 
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