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1- Introduction
Due to increasing global competition, a shortening product life cycle, changing market demand,
and diverse customer needs, manufacturers are compelled to adopt technologies that enhance

production system efficiency, optimize the use of existing facilities, and keep pace with market
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changes. Therefore, they have shifted their production systems from mass production to hybrid
production systems so that they might keep up with a quickly changing market.

To adapt to such a transition, their production systems must be more efficient and flexible.

Group technology is a manufacturing philosophy that enables the economic production of both
small batch production and mass production. The technology encompasses the same elements in
the same manner, including product design, process planning, manufacturing, and assembly.
Cellular Manufacturing System (CMS) is a type of GT application that divides machines into
machine groups and parts into part families, assigning production cells to related groups and
families to minimize inter- and intra-cell movements and unnecessary costs.

Cellular manufacturing is a lean manufacturing approach that integrates the high flexibility of
individual production with the high efficiency of mass production, thereby reducing the cost of
individual production and the rigidity of mass production.

In the design of a CM system, similar parts are grouped into families and associated machines into
groups so that one or more-part families can be processed within a single machine group.

In general, CMS offers efficiency, flexibility, high order, and independence, which enhance
quality, optimize the use of space, manpower, and machinery, and reduce labor costs, material
transportation costs, and material inventory during construction.

Currently, an increasing number of researchers and enterprise managers are focusing on the
importance of efficiency, flexibility, self-discipline, and independence in cellular manufacturing,
leading to remarkable achievements. Cellular manufacturing is typically viewed as the problem of
identifying a set of parts that a group of machines can process. This identification is called cell
formation (CF).

The CF problem aims to assign machines into machine groups and parts into part families and
determine manufacturing cells with the corresponding machine group and part family. The CF
must consider various strategic-level operational issues, including machine capacity, machine cost,
operation sequence and routing, material handling cost, and overall operation cost. Furthermore, a
meaningful cellular manufacturing system is necessary to align with operational objectives,
including high machine utilization, minimal work in process, and optimal workload balance.
Therefore, CF can be used to shorten lead time, reduce work in process, improve productivity,

simplify scheduling, and reduce logistics time and cost in the cellular manufacturing system.
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Since CF was first asserted by Burbidge in 1971, minimizing intercellular movement times,
distances, machine costs, operation costs, and the number of exceptional parts and machines
(where parts or machines are assigned to more than one cell for processing) are common design
objectives.

There are three strategies used to form manufacturing cells in existing CF design methods.

Cell formation (CF), the layout group (GL), and the Planning Group (PG) are three important
steps in the production of cells [2]. Among them, CF is primarily [7] and is a key step in the per-
cell production problem [8]. Cell formation involves the same processes that identify the required
family of parts and assign them to cells associated with the processing machinery [1], [2],
[7]. 1deally, each cell producing cells should act as an independent production unit. CF approach
to eliminate/minimize the transcell costs between the parts. [5], [6], [9-12].

To achieve the objectives, various CF techniques have been proposed in existing literature. The
main techniques include classification and coding systems, mathematical and heuristic approaches,
similarity coefficient-based clustering methods, graph theoretic methods, fuzzy clustering
methods, evolutionary approaches, and neural network approaches, among others.

While more realistic and effective methods can be developed considering the flexibility of the
manufacturing data and the different products involved, among the CF-based methods, the
similarity coefficient technique is more flexible and easier to implement [8]. McAuley is the first
researcher to use SCM for machine cell grouping [13-17].

McAuley [8] introduced the Jaccard similarity coefficient to measure the similarity between each
pair of machines and then to group the machines within a cell based on their similarity measure.
Although many factors of similarity of parts or machines have been considered in previous
research, few of them address both the factors of operation sequence and the number of repetitions
of operations simultaneously. In many practical manufacturing systems, it is natural for parts to
meet machines more than once [18-19]. The sequence of operations, including repeated ones,
considers both the machine's requirements and the material flow. These factors are influential in
evaluating the similarity coefficient of parts/machines. Also, the combination of important
properties such as production volume, operation sequence, cost/time of movements between cells,
alternative process plans (routing flexibility), identical machines, and sequence of operations of
parts (operation flexibility), which are used to apply direct and indirect relationships between

machines, is not considered in the previous similarity coefficients. In this paper, a mathematical
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programming model is employed to assign a family of similar parts to machines in a cell. This
model considers both the similarity coefficient and the sequence of operations, as well as the
number of repetitions of operations, to identify the family of parts with the maximum degree of
similarity. It also discusses past research that is deeply related to this research.
The machine components in the cell are identified using two different similarity coefficients to
determine the similarity between parts and used machines. The framework of the remainder of the
content is organized as follows: Section 2 describes the two-phase procedure of the proposed new
approach. In Section 3, one example is presented to illustrate that the new approach is efficient
and feasible. Conclusions and future research are provided in Section 4.
2-Problem description and model
This section is devoted to explaining the two-phase methodology mentioned above. Phase |
involves identifying part families using the improved similarity coefficient method. Phase 1l
presents a decomposed model for assigning machines to part families under multi-objective design.
Before the description of the two-phase methodology, the notations used throughout this research
are listed in Table 1.
2.1 Notations and Symbols

Table 1: Notation of the two-phase method

Index Description

ii={1,.......I} Index of parts
={1,....... J} Index of machines
c={l....... , C} Index of cells

op={l...... , OP} Index of operations

k={1....K;} Operation sequence number of parts i
={1....,n" Index of operations op for part i
t’={1....,nf,p } Frequency of operation op process part i’

Parameters Description

rf,pi Sequence number of part i, is processed by operation op in the (t) time
rf,pi: Sequence number of part j, is processed by operation op in the (t) time
aﬁ‘,’ 1, if operation op processes both part i and i
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Parameters Description

op
bii'

biji
Variables

Sii!

Ujjk

N;

Tic

ch

Vikc

jc

Qjc

0, otherwise

1, if operation op process part i, but does not process part i’
0, otherwise

1, if operation op process part i’ but does not process part i
0, otherwise

1, if operation op processes neither part i nor 1’

0, otherwise

Demand of part i

Material inter-cell movement cost for per unit part i

Cost of machine j

Available capacity of machine j

Operation cost of machine j for unit time

Operation time of kth operation of part i on machine j

1, if part i is assigned into cell ¢

0, otherwise

1, if operation k of part i is performed on machine j

0, otherwise

Description

Improved similarity coefficient between part i and 1’

1, if operation k of part i is performed on machine j in cell ¢, otherwise; 0
Number of machine j will be assigned into cell c

Surplus capacity of exceptional machine j in cell ¢

Wjc Minimum inter-cell movement cost induced by removing exceptional
machine j, which is utilized incompletely

Quantity of part i processed by operation k for the Wic

1, if the incompletely utilized exceptional machine j is assigned to cell ¢
0, otherwise

Minimum utilization of exceptional machine j in cell ¢
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Variables  Description

Additional quantity of part i, whose operation k will be performed by
ke exceptional machine j, transferred to cell ¢ from another cell
2.2-Phase I—an improved similarity coefficient method
For part family identification, SCM has been widely applied to the CF problem, as shown in
Section 2. The similarity coefficient is a value that ranges from 0 to 1, representing the relationship
between two-part types/machine types. The two-part types/machine types will be more similar if
the value of the similarity coefficient is larger, and vice versa.
Based on similarity measurement, parts and machines can be grouped using a cluster algorithm.
The improved SCM innovatively considers the operation sequence and the number of repeat
operations simultaneously for part family identification in this phase. The operation sequence of
parts is an ordering of operations in the manufacturing system, just as the serial number for each
part column in Table 2. A similar operation sequence between two parts can lead to a high
similarity coefficient between them. Meanwhile, it is generally known that repeated operations
widely exist in the real-world manufacturing environment. Repeated operation means a part needs
the same operation more than once, as indicated by multiple figures in the elements of Table 2.
We believe that the number of repeated operations will significantly influence the similarity of
parts. Before applying the similarity coefficient measure, an optimized design will be implemented
to group parts preliminarily according to the inclusion relationships of operation sequences,
thereby reducing the problem size. The detailed steps of phase | are as follows:
Step 1: Attain the part-operation incidence matrix from production.
A simple example is used to demonstrate the part operation incidence matrix in Table 2. In the
example, the production system consists of four parts and four operations.

Table 2: Part operation incidence matrix

: Part
Operation
Part 1 Part 2 Part 3 Part 4
1 1.3 1.3 0 0
2 2 2 1 0
3 0 4 2 1
4 0 0 3 2
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Numbers in the matrix represent the operation sequences of each part. Notably, elements with
multiple numbers represent repeated operations of parts; specifically, part P1 and part P2 are
performed by operation opl twice, at the first and third processes. And the element "0" means a
part does not need the corresponding operation.

Step 2: Group parts to reduce the problem size.

Step 2.1 Check all the elements of the part-operation incidence matrix.

Step 2.2 Find out all inclusion relations of operation sequences between any pair of parts. In the
example of step 1, parts P1 and P2 can be merged into one group because the operation sequence
of P1 is contained in P2. In some cases, if the operation sequence of a part is contained in two or
more parts, the one with the shortest operation sequence should be chosen to form a group. If ties
are happening, random selection is a general approach.

Step 2.3 Treat group members as a single entity to obtain the new part-operation incidence matrix.
The resulting composite operation sequence is always the longer sequence of the group members.
Therefore, the operation sequence of the group of P1 and P2 conforms to P2 in the example.

Step 2.4 Back to step 2.1 until no inclusion relations can be found.

Step 3: Calculate the similarity coefficient based on the grouped part-operation incidence matrix.
We deem that parts will have higher similarity if they are performed at more similar operation
sequences. If not, the correlation would be lower relatively. In this sense, the operation sequence
ratio OSR;;» between parts i and i’ is defined as follows:

OoP
Zop:l(ocii’()p-wii’ op)_ (2)
[
2590 [ex;;1°P.max (n;°P nsoP)]

OSRii’ =

op — op _
( < P=0, W™ =0

o1 P=1,n°" 2 ny? = WP

[l
Qﬁ
i
.H
<
Q
s,
o,

=1
: t _ t! r_ op
¢ ¢ _ {2 0f 1ot =V oyt t'=12,..,ny
) ropi rOpi’ = { 14 14

1 otherwise

Tl./op
op — .op op op _ ¢ ¢!
oG P= 1,0 <np°? = W;"" = Topit Topi!
t'=1
t' — t I __ 0
Topit ropl,,t’ _ { 2 0if ropt =V 1t t'=12,..,m%
\ 1 otherwise
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The number of repeated operations is another crucial factor for improving the similarity coefficient
method. RMC is a commonly used similarity coefficient for the CF problem and was presented by
Islam and Sarkar [3]. Currently, few researchers focus on how the number of repeated operations

affects parts similarity, as illustrated below.

A+ dy
Siyr = (3)
Qi + by 4 cyr +dyr + g dy
oP
— 0D 47.0D ,,  OD
aii’ —_ Z aii’ .nl .nl”

op=1

dyr = Z dyr P

Finally, the improved similarity coefficient, which considers both the operation sequence and the

number of repeated operations simultaneously, can be attained by combining formulas (1) and (2).
Siit = OSRyr . sy (4)

Step 4: Form part families using the cluster algorithm.

This step utilizes the P-median model, which was proposed by Kusiak [6], to form part families

based on the result of the similarity coefficient. The objective of this model is to optimally identify

part families by maximizing the similarity coefficient between parts in each family.

3.2 Phase I1—a mathematical model for machine assignment

Phase Il presents a new mathematical model to assign machines to part families identified in phase

I. This model decomposes the complicated multi-objective CF problem into several simple

subproblems, making it easier to explain and compute.

The first step involves identifying operation routing and the required machines, considering part

demand and machine capacity constraints, to form machine groups that minimize both machine

and operation costs. Exceptional machines can be judged in this step.

They are the machines required by multiple part families, whereas only one part family needs non-

exceptional machines. To meet part of the demand, assignment of non-exceptional machines is
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supposedly fixed, even if their utilization will be low. However, the surplus capacity of exceptional
machines in different cells can be merged by material inter-cell movement. Therefore, the second
and third sub-problems are to decide how to merge the surplus capacity of exceptional machines
that cannot be utilized fully. The decision is based on the minimum investment required for
material inter-cell movement and exceptional machines. In the third step, we assign a weight g to
determine the relative importance of intercell movement versus exceptional machine duplication
for CF. g=0Omeans inter-cell movement is not needed in the manufacturing system, and we refer to
it as an "independent cell system.” g=1 means exceptional machines should be required as few as
possible in the manufacturing system; some parts can be transferred among cells for related
operations, and we refer to them as a " dependent cell system. Furthermore, the last step is to
determine the production planning of parts among cells under optimum machine utilization and
workload balance. The problem is formulated according to the following assumptions: Each part
has several operations that must be processed in a specific sequence.

e The processing time of the operation for each part is known.

e The part demand is known.

e The operation routing of some parts is an alternative.

e The cost, capacity, and operational cost of each machine are known.

e The inter-cell movement cost of each part is known, regardless of distance.

e Some machines are multipurpose, and repeated operations are in the manufacturing system.

e Intra-cell movement is ignored.

e Lower and upper bounds of cells are not limited.

e Each operation can be assigned to one machine.

e The part demand should be satisfied totally.
According to the problem assumptions above and notations given in Table 1, the objective
functions and constraints of the decomposed model are described below.
To determine operation routing and the required machine in some real-life manufacturing systems,
operations can be performed by more than one machine, allowing for alternative operation routing.
Therefore, it is necessary to select operation routing based on the minimum machine cost and
operation cost. The purpose of the objective function (4) in the following integer programming
model is to determine the machine type and quantity for each part family and form independent

cells. Moreover, the result can tell us which machines are exceptional.
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] c c 1 K;
Mln=ZZC]N]C+Z ZZYLCvltuksjuukc (4)
j=1c=1 c=1i=1j=1k=1
Subject to:
c J
Z bijr- Uijre = 1 Vi, k (5)
c=1j=1
Ujjke < bijk Vi,j,k,c  (6)
k;
§=1Zk=1vi-tijk-uijkc <1 vj, c )
G
Njc > 0,are (0,1) integers Vj,c (8)
u;jc,are (0,1) integers Vj,c 9)

Constraints (5) and (6) guarantee that each operation of each part is assigned to only one machine
in one cell.

Constraint (7) ensures that machine capacities are not

exceeded. Constraints (8) and (9) represent the binary and non-negativity integer requirements on
the decision variables.

Step 2: To calculate the minimum material inter-cell movement cost

Normally, some machines cannot be utilized

completely in cells. The non-exceptional machine assignment is fixed to meet part demand.
Nevertheless, it is possible to optimize surplus capacities of exceptional machines by material
inter-cell movement among different cells.

The optimized capacity allocation can reduce the demand for exceptional machines while also
increasing machine utilization. However, inter-cell movement cost will inevitably be induced. wjc
is the minimum inter-cell movement cost caused by cutting relevant exceptional machine j, which

is not fully utilized, from cell c.

Min = i Z W (10)

c=1 jeEM

Subject to:

10
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1 K
= Zzhi'vijkC'uijkC V] EEM,C (11)
i=1 k=1
rjc — Njc . 1Zk 1Zl l]k-uijkc Vj cEM (12)
J
1 ki
Z ijk - Vl]kC l]kC - (1 r]c) C Vj €EM,c (13)
i=1k
Uijke: Vijre < Vi Vi,j € EM,k,c (14)
Vijke > 0,are integer variables Vi, j€E EM,k,c (15)

EM is the set of exceptional machines. The objective function of Egs. (10) and (11) account for
minimizing inter-cell movement cost. Constraint (12) shows the calculation of rjc, which is the
surplus capacity of the exceptional machine j in cell c.

Constraint (13) is to guarantee that the variable Vijk accords with the surplus capacity of the
exceptional machine j in cell c.

Constraint (14) ensures Vijkec cannot exceed part demand.

Constraint (15) is the non-negativity integer requirement.

Step 3: Determine if the exceptional machine, j, should be assigned to cell c, even if it is not fully
utilized. Obviously, if the cost savings by cutting machines are less than the accompanying

material inter-cell movement cost, the machine cutting will be irrational. Otherwise, it is feasible.

Max=%5_1 ¥ jeem[(1 — @)-Wje — q.¢;]- a;c (16)
Subject to:
1(1 Zé=a(1~1ic) <1 Vj € EM (17)
c 1 jc
q={0or1} (18)
ajc ,are (0,1) integers Vj € EM,c (19)

The objective function of Eqg. (16) means the potential benefit caused by assigning exceptional
machine j, which is not fully utilized to cell c. Constraint (17) specifies that the final utilization of
each machine is covered by its capacity.

Constraint (18), (19) is the limitation of the user-specified weight g.

Step 4: To distribute extra parts caused by the merging machine capacity

11
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The extra parts will become available if some exceptional machines are cut down due to the merger
of machine capacities. They should be transferred to other cells to meet the total demand.

Thereby, the last sub-problem is to determine the type and quantity of parts that should be
transferred to each cell. The lot splitting design is based on optimizing utilization and minimizing

workload imbalance of exceptional machines across different cells.

- IaX Qs
Min= Xy jepm SC 0. (20)
c=1%jc
subject to:
sk po b
Qjc = ajc.(1-1jc + Z“lz’”;jf Ry (21)
o Dimatje c .
if m > 1and ZC=1 Qjc 1 Vj € EM,c (22)
. Zg: Tjc .
Qjc = ajc-(l' Tic); if m =1 Vj€EM,c (23)
c
Zf"f’“ = Vijre Vi, j € EM,k,c (24)
c=1
1 K
zzfijkC'tijk <T]CC} VjEEM,C (25)
i=1 k=1
fijke > 0, are integer variables Vi,j € EM,k,c (26)

The objective function expressed by Eq. (20) minimizes the total workload imbalance of
exceptional machines in each cell. Equations (21)— (23) are to calculate the final utilization of
exceptional machine j in cell c. Constraint (24) ensures the transferred part and amount as
requested by step 3. Constraint (25) indicates that added parts from other cells do not exceed the
capacity of exceptional machine j in cell c.

3- Computational experiments

In this example, we consider 11-part types and 10 different types of machines. All the part types
and machine types are to be grouped into three cells.

Nine operation types are needed among the 11-part types in the experimental manufacturing
system, as shown in Table 3. A series of sequential operations processes each part. It is worth
noting that some parts include repeated operations in their operation sequence. In part P1, both the

third and fifth operations are processed by operation Op3.

12
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Table 3: Part operations incidence matrix

Pat |19 1y @ |3 |2 |¢e | S|l |2 |8 |2
operation | § | & |& |& | & |& |& |8 |& |§F | B
Opl 1 1 1 1
Op2 2 1 1 2 1 2 2 1 2

Op3 | 3,5 2 |35 3

Op4 4 2,4 3 2 1,3 1 1,3 3
Op5 3 4 3 2,4

Op6 6 | 5 3,5

Op7 6 4 6 2,4 2
Op8 5 5
Op9 6

Based on the rule of step 2 in phase I, part groups are identified as shown in Table 4. Hence, the
number of part types could be reduced to 8 from 11.

Table 4: part groups

Part PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8
Operation PL | P2(P5) | P3 | P4pP6) | P7(P9) | P8 P10 | P11

Opl 1 1(1) 1

Op2 2 1(1) 1 2(2) 2(2) 1

Op3 3,5 2 3, 5(3)

Op4 4 2,4(2) 3 1,3(1) 1,3 3

Op5 3(3) 4 2,4

Op6 6 5 3,5

Op7 6 4 6 2,4 2

Op8 5 5

Op9 6

According to the similarity coefficients, we can identify part families by the P-median model.
Table 5: similarity coefficient

PG2 PG3 PG4 PG5 PG6 PG7 PG8

PG1 0.3086 0.2857 0.6306 0.2701 0.1886 0.1273 0.2681

13
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PG2 PG3 PG4 PG5 PG6 PG7 PG8
PG2 0.3077 0.1538 0.3153 0.4837 0.2874 0.2308
PG3 0.2400 0.3201 0.2146 0.2481 0.2727
PG4 0.1945 0.2667 0 0.2329
PG5 0.1540 0.6048 0.3201
PG6 0.1333 0.1073
PG7 0.4000

part family 1— {P1, P4, P6},

part family 2— {P2, P5, P8},

part family 3— {P3, P7, P9, P10, P11}

After part family identification, the next step is to assign machines into corresponding families so
as to form manufacturing cells.

Tables 6-10 present input data generated randomly within the ranges of data found in most
published articles and case studies, showing that there are 10 machine types to perform nine
operations in the given manufacturing system.

Computational experiments in the method are operationalized using software on a PC with a 2.94-
GHz processor and 2 GB of memory.

Table 6: Assign machines to operations

Machine/
Operation

ML | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 M10

The element "1" indicates that the corresponding machine is capable of operating.

14
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Table 7: machine information

Applied Science and Engineering

- Machine cost Machine capacity Machine operation
Machine j : — -
cj (%) Cj (min) cost sj (%)
M1 1300 1224 1.1
M2 1500 1224 1.3
M3 1150 1224 1.3
M4 1600 1224 1.0
M5 1100 1224 1.2
M6 1800 1224 15
M7 1500 1224 0.6
M8 1000 1224 1.1
M9 1100 1224 1.1
M10 1250 1224 1.2
Table 8: Operation sequence, time
| Operation : Operation sequence
Parti Operation data
number Kj 1 2 3 4 5 6
Machine j M1 | M1/M2| M6 M3 |M6| M8
P1 6 Processing
) ) 0.5 0.9/0.7 1.2 1.0 1 0.8
time tijx (min)
Machine j M1/M2 M3 M4/M5 M3 M8 | M4/M7
P2 6 Processing
) ) 1.0/1.2 0.8 0.4/0.6 0.8 1.3 | 1.4/1.3
time tijx (min)
Machine j M1/M2 | M6 M3
P3 3 Processing
) ) 1.0/1.2 0.8 1.5
time tijx (min)
Machine j M1 | M1I/M2| M6 | M4/M5 | M6
P4 5 Processing
] ) 0.7 1.2/0.9 1.3 09/11 | 1
time tijx (min)
P5 3 Machine j M1/M2 | M3 | M4/M5

15
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| Operation : Operation sequence
Parti Operation data
number K; 1 2 3 4 5 6
Processing
o ] 0.8/1.1 1.0 1.2/1.4
time tijk (min)
Machine j M1 | M1/M2| M6
P6 3 Processing
o ] 1.1 1.5/1.3 1.5
time tijk (min)
Machine j M3 M1/M2 M3 M4/M7 | M9
P7 5 Processing
o _ 0.9 1.4/1.2 0.9 1.3/1.7 | 2.2
time tijk (min.)
Machine j M1/M2 | M4/M5 M8 M4/M5 | M8 | M4/M7
P8 6 Processing
o ] 0.8/0.8 | 1/1.4 1.0 0.6/0.9 | 1.3 | 1.6/1.1
time tijk (min)
Machine j M3 | M1/M2
P9 2 Processing
o 1.0 | 1.5/1.3
time tijk (min)
Machine j M3 | M4/M7| M3 | M4/M7 | M9 | MI10
P10 6 Processing
L ] 1.0 1.6/1.3 0.8 1.6/09 | 1.9 2.1
time tijk (min)
Machine j M1 | M4/M7 | M3
P11 3 Processing
T 09 |14/16| 1.2
time tijk (min)
Table 9: Part demand
Parts
Demand—vi PL| P2 | P3| P4 |P5)|P6|P7| P8 | P9 |P10|P11
500 | 400 | 550 | 500 | 700 | 600 | 800 | 1000 | 450 | 500 | 550
Material inter-
) 07(10(05|07|05|1007| 07 110510
cell movement cost hi ($)

16
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Table 10: Machine quantity in each cell

Machine Cell
Cell 1 Cell 2 Cell 3 Total
M1 2 2 3 7
M2 1 0 0 1
M3 1 2 4 7
M4 1 3 2 6
M5 0 0 0 0
M6 3 0 1 4
M7 0 1 1 2
M8 1 3 0 4
M9 0 0 3 3
M10 0 0 1 1
Tablell: Minimum utilization of exception
Exceptional Independent cell Dependent cell
machines system (q=0) system (q=1)
M1 0.32 0.76
M3 0.09 1
M4 0.37 0.71
M6 0.36 0.93
M7 0.9 0.9
M8 0.3 0.63
Table 12: Maximum workload imbalances of exceptional machines
Exceptional Independent Dependent
cell cell
machines system (q=0) system (q=1)
M1 0.68 0.24
M3 0.91 0
M4 0.63 0.29
M6 0.64 0.07
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M7 0.21 0.21
M8 0.7 0.37
Table 13: Comparison between independent and dependent cell systems
Independent Dependent
Improvement
_ cell system cell system
Machine cost ($)
(9=0) (9=1)
47,000 39,000
Inter-cell movement 0 1049
Total cost ($) 47,000 40,049 14.8 %
System utilization 73.6 % 90.1 % 16.5 %

This section evaluates the performance of independent and dependent cell systems formed by
applying the proposed algorithm to the experiment.

In the independent cell system (q=0), despite the absence of material inter-cell movements, some
machines' utilization is so low that a significant amount of capacity will be wasted. In the
dependent cell system (g=1), parts are transferred between cells, allowing for the elimination of
underutilized machines and improving overall machine utilization. Not only that, but it also
decreases the workload imbalance of exceptional machines, as shown in Table 13. However, just
like the two sides of a seesaw, the increase in material inter-cell movement cost is the price of the
benefits. The cost of the machine is reduced sharply, but the inter-cell movement cost is increased
as a trade-off. It is a relief that the total cost of both has dropped by 14.8%. Moreover, system
utilization in the dependent cell system is enhanced by 16.5 %. By eliminating superfluous and
underutilized machines from the manufacturing system, a more reasonable workload assignment
can be achieved among cells.

4- Conclusions and future research

In this paper, a two-phase approach was proposed for CF in the cellular manufacturing system. In
the first phase, an improved SCM was presented for identifying part families. The main difference
of the improved method from existing research is that the operation sequence and the number of
repeated operations are considered simultaneously in part similarity measurement. Based on the
similarity coefficients, the part family identification would serve as the foundation for the next
phase. In the second phase, a decomposed mathematical model was presented, considering various

crucial operational aspects such as machine cost, operation cost, inter-cell movement cost,
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alternative routing, part demand, processing time, lot splitting, and machine available capacity, to
assign machines into part families. The model decomposes the NP-complete problem into several
simple sub-problems, thereby facilitating the cell formation problem and reducing computational
efforts. The ultimate aim of the two-phase approach is to form promising manufacturing cells with
minimum machine investment, operation cost, and inter-cell movement cost, as well as maximum
machine utilization and workload balance.

It also leads to effective production scheduling with optimum system utilization in the complex
cellular manufacturing system. Moreover, to reduce problem size, our model focuses on
exceptional machines rather than all the mentioned machines. Computational experiments
demonstrated that significant cost savings and system utilization improvements can be achieved
by considering the trade-off between machine duplication and material inter-cell movement. To
continue the research direction outlined in this paper, two major directions are suggested. First,
the proposed method in our research was confirmed by some small-scale problems

, but its limitation is that a long computational time will be needed for solving large-scale problems.
Therefore, future work will focus on developing metaheuristics to solve the proposed problem with
more reasonable computational efforts. Furthermore, we will consider additional variables such as
layout design, cross-trained workers, and setup time in the applied CF problem.
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