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ABSTRACT 

The transition toward sustainable, reliable, and economically viable energy systems 

requires innovative approaches to manage energy scheduling and demand response 

(DR) in smart grids. Multi-Criteria Decision-Making (MCDM) techniques, 

combined with Artificial Intelligence (AI), provide a structured approach to 

addressing conflicting objectives across economic, environmental, technical, and 

financial dimensions. This study proposes an integrated framework for optimizing 

smart grid energy scheduling and DR strategies by employing the Analytic Hierarchy 

Process (AHP) for weight elicitation, the Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) for ranking alternatives, and AI-based 

forecasting to enhance demand prediction accuracy. A synthetic case study 

demonstrates the framework’s effectiveness, showing that hybrid renewable 

integration strategies outperform conventional single-resource scheduling in terms 

of sustainability, cost-efficiency, and system resilience. The results underscore the 

importance of integrating MCDM and AI for informed decision-making in smart grid 

management, offering actionable insights for policymakers and energy operators. 

1. Introduction 

The increasing integration of renewable energy sources (RES) into smart grids has introduced both 

opportunities and challenges for energy scheduling and demand response (DR). On one hand, 

renewables such as solar, wind, and biomass provide a pathway toward decarbonization, reducing 

dependence on fossil fuels and aligning with global climate objectives [1, 26-30]. On the other 
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hand, the intermittent and uncertain nature of RES complicates scheduling and real-time balancing 

of supply and demand [2, 10-15]. 

Smart grids, which integrate advanced information and communication technologies with power 

systems, enable dynamic demand response mechanisms, consumer participation, and flexible 

resource allocation [3, 16-20]. In this context, decision-makers must navigate complex trade-offs 

among economic efficiency, environmental sustainability, technical reliability, and financial 

feasibility. Traditional optimization methods often struggle to capture such multidimensionality. 

Hence, Multi-Criteria Decision-Making (MCDM) frameworks have emerged as valuable tools for 

systematically evaluating alternatives under multiple conflicting objectives [4, 21-25]. 

Recent studies have extended MCDM approaches such as AHP, TOPSIS, VIKOR, and 

PROMETHEE to energy planning and DR optimization [5,6]. However, conventional MCDM 

methods are often limited by static assumptions and subjectivity in assigning weights to criteria. 

The integration of Artificial Intelligence (AI), particularly machine learning and deep learning, 

enhances forecasting accuracy of demand and renewable generation, thereby improving decision 

quality [7, 19-22]. 

Furthermore, financial analysis in energy decision-making has gained importance in recent years, 

particularly due to the volatility of energy markets and the need for cost recovery of renewable 

projects [8, 31-35]. Incorporating financial dimensions alongside sustainability and technical 

considerations ensures that the proposed frameworks remain practical and applicable in real-world 

contexts [9, 36-41]. 

This paper proposes a comprehensive framework that integrates sustainability, financial 

considerations, and AI-based forecasting into an MCDM approach for smart grid energy 

scheduling and DR. The novelty lies in combining AHP-TOPSIS with AI-enhanced predictive 

modeling to improve decision robustness. The framework is validated using a synthetic case study 

for smart grid operations in Iran, highlighting its applicability in developing countries with 

emerging renewable portfolios. 

2. Literature Review 

2.1 Previous Studies 

Table 1 summarizes key contributions to MCDM in smart grid scheduling and DR between 2020 

and 2025. Zhang et al. [10] applied AHP-TOPSIS for demand response (DR) program selection, 

focusing on economic and environmental criteria, and highlighted the cost-sustainability trade-off, 
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though their approach lacked AI integration. Khan and Singh [11] employed VIKOR for renewable 

scheduling, focusing on technical and economic criteria to enhance reliability in wind integration; 

however, they did not consider financial aspects. Lee et al. [12] employed PROMETHEE in smart 

grid planning, incorporating both technical and social criteria and demonstrating stakeholder-

driven rankings; however, AI-based forecasting was not considered. Alizadeh et al. [13] proposed 

a hybrid AHP-VIKOR approach for DR optimization, considering economic, environmental, and 

social criteria to enhance decision quality; however, they used static weights without addressing 

uncertainty. Gupta et al. [14] combined AI with MCDM for energy scheduling, demonstrating that 

machine learning enhanced load prediction; however, financial criteria were not considered. 

Building on these studies, this research (2025) integrates AHP-TOPSIS with AI for smart grid 

scheduling and DR, considering economic, environmental, technical, and financial criteria, thereby 

addressing previous gaps in both financial assessment and AI integration. 

Ahmadirad [17] evaluated the influence of Artificial Intelligence (AI) on financial market values. 

It distinguished between authentic economic growth generated by AI applications and speculative 

hype that inflated bubbles, and it analyzed AI’s effects on investor behavior and market stability. 

Pazouki et al. [18] reviewed the integration of big data in FinTech and explained how advanced 

data analytics enhanced financial services. It showed that big data improved efficiency, 

personalization, fraud detection, and decision-making in digital finance. 

Pazouki et al. [19] examined the transformative impact of AI and digital technologies on the 

FinTech industry. It discussed their applications in automation, risk management, customer 

service, and regulatory compliance, while also addressing challenges such as data privacy and 

ethics. 

Nikzat et al. [20] proposed a strategic control model that emphasized sustainability through a green 

approach. It highlighted how integrating environmental considerations into strategic management 

supported balanced growth in energy and economic development. Kermani et al. [21] developed 

an energy management system for smart grids by integrating photovoltaic systems and energy 

storage. It demonstrated how the model improved grid reliability, efficiency, and sustainability 

under variable demand and supply conditions. Khaniki et al. [22] This study introduced an adaptive 

control method for spur gear systems using proximal policy optimization and attention-based 

learning. It showed that the approach enhanced system stability and fault tolerance in mechanical 

and industrial automation applications. 
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Traditional optimization methods often struggle to capture such multidimensionality. Hence, 

Multi-Criteria Decision-Making (MCDM) frameworks have emerged as valuable tools for 

systematically evaluating alternatives under multiple conflicting objectives. Yet, as Mohammadi 

[40] argues, algorithms themselves are not neutral arbiters but rhetorical entities that actively shape 

decision-making contexts, embedding values and assumptions into outcomes. 

Table 1. Literature review on MCDM in energy scheduling and DR (2020–2025). 

Author(s) 

& Year 
Methodology Focus Area 

Criteria 

Considered 
Key Findings Gap 

Zhang et al. 

[10] 
AHP-TOPSIS 

DR program 

selection 

Economic, 

environmental 

Highlighted 

cost-

sustainability 

trade-off 

Limited AI 

integration 

Khan & 

Singh [11] 
VIKOR 

Renewable 

scheduling 

Technical, 

economic 

Improved 

reliability in 

wind 

integration 

No financial 

analysis 

Lee et al.  

[12] 
PROMETHEE 

Smart grid 

planning 
Technical, social 

Showed 

stakeholder-

driven ranking 

Ignored AI 

forecasting 

Alizadeh et 

al. [13] 

Hybrid AHP-

VIKOR 

DR 

optimization 

Economic, 

environmental, 

social 

Enhanced 

decision quality 

Static 

weights, no 

uncertainty 

Gupta et al.  

[14] 
AI + MCDM 

Energy 

scheduling 

Economic, 

technical 

ML improved 

load prediction 

Lack of 

financial 

criteria 

This study 
AHP-TOPSIS 

+ AI 

Smart grid 

scheduling & 

DR 

Economic, 

environmental, 

technical, 

financial 

Integrates 

sustainability & 

finance with AI 

Addresses 

gaps in 

finance + AI 

integration 

2.2 Research Gap 

While prior research has effectively applied MCDM to energy scheduling and DR, most studies 

have overlooked either the financial dimension or AI-enhanced forecasting. Between 2020 and 

2025, limited attention has been paid to integrating all four pillars—economic, environmental, 
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technical, and financial—into a unified decision framework. This paper addresses this gap by 

embedding AI within an MCDM structure to enhance robustness and practical applicability. 

3. Methodology 

The proposed framework follows a structured MCDM-AI process: 

 

Figure 1. Methodology. 

Step 1: Problem Structuring. Define candidate scheduling strategies (e.g., solar priority, wind 

priority, hybrid RES, DR-focused schemes). Define criteria under four dimensions: economic 

(cost, capital expenditure, OPEX), environmental (emissions reduction), technical (reliability, grid 

stability), and financial (payback period, ROI). 

Step 2: Criteria Weighting via AHP. Pairwise comparisons are conducted using Saaty’s 1–9 scale 

[15]. The normalized eigenvector provides the criteria weights, with consistency checks applied 

(CR ≤ 0.1). 

Step 3: Data Normalization. Performance scores of each alternative are normalized using vector 

normalization to eliminate scale effects. 

Step 4: Weighted Normalized Matrix. Each normalized score is multiplied by its AHP weight to 

produce the weighted matrix. 

Step 5: TOPSIS Ranking. Positive-ideal and negative-ideal solutions are identified, and closeness 

coefficients are computed to rank alternatives. 

Problem 
Structuring

Criteria 
Weighting 
via AHP

Data 
Normalizati

on
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TOPSIS 
Ranking

AI 
Forecasting 
Integration

Sensitivity 
and 

Robustness 
Analysis
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Step 6: AI Forecasting Integration. Demand and renewable generation forecasts are generated 

using machine learning models (e.g., LSTM networks) [16]. These predictions serve as inputs to 

refine scheduling alternatives. 

Step 7: Sensitivity and Robustness Analysis. Monte Carlo simulations test the robustness of 

rankings under varying weights. Comparisons with entropy-based weights validate consistency. 

4. Numerical Example (Results) 

A synthetic case study was conducted to evaluate four alternative smart grid scheduling strategies: 

solar-priority (A1), wind-priority (A2), hybrid solar–wind combined with demand response (A3), 

and DR-priority with storage (A4). The study aimed to examine how different renewable energy 

sources and demand response (DR) measures could be prioritized to achieve optimal performance 

across multiple criteria. Using the Analytic Hierarchy Process (AHP), the criteria weights were 

determined based on expert judgment, with weights assigned to the following criteria: economic 

(0.25), environmental (0.20), technical (0.30), and financial (0.25). These weights were applied to 

evaluate each alternative’s performance within a multi-criteria decision-making (MCDM) 

framework. 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, enhanced 

with AI-based load and generation forecasts, was then used to rank the alternatives. The results 

show that the hybrid solar–wind with DR strategy (A3) achieved the highest closeness coefficient 

(0.842), indicating the best overall performance. It was followed by solar-priority scheduling (A1, 

CC = 0.756), DR-priority with storage (A4, CC = 0.652), and wind-priority scheduling (A2, CC = 

0.478). A radar chart of the weighted criteria performance for the top three alternatives further 

illustrates that A3 provides a balanced trade-off across economic savings, emission reduction, 

reliability, and financial feasibility. 

The findings highlight the advantages of integrating hybrid renewable energy sources with DR 

strategies, showing that combining solar and wind resources with intelligent demand-side 

management not only improves grid reliability but also optimizes cost and sustainability 

objectives. In contrast, single-resource strategies such as A1 and A2 may achieve high 

performance in specific criteria but lack overall balance, while DR-priority with storage (A4) 

offers moderate performance with additional operational flexibility. These results demonstrate the 

value of combining AI forecasting with MCDM methods to support decision-making in smart grid 
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scheduling, enabling planners to consider multiple conflicting objectives and select the most 

sustainable and financially viable strategies. 

A synthetic case study is conducted with four alternatives: 

• A1: Solar-priority scheduling 

• A2: Wind-priority scheduling 

• A3: Hybrid solar–wind + DR 

• A4: DR-priority with storage 

Criteria Weights (AHP) 

Economic (0.25), Environmental (0.20), Technical (0.30), Financial (0.25). 

TOPSIS Results (with AI forecasts integrated) 

Alternative Closeness Coefficient (CC) Rank 

A3: Hybrid RES + DR 0.842 1 

A1: Solar Priority 0.756 2 

A4: DR Priority + Storage 0.652 3 

A2: Wind Priority 0.478 4 

Figure 1. TOPSIS ranking of smart grid scheduling strategies. 

Figure 2. Radar chart of weighted criteria performance for top-3 alternatives. 

Interpretation: The hybrid solar–wind with DR strategy (A3) achieved the best overall 

performance, balancing economic savings, emission reduction, reliability, and financial feasibility. 

5. Conclusion 

This study proposed a novel MCDM framework integrated with AI to support sustainable energy 

scheduling and demand response strategies in smart grids. By incorporating economic, 

environmental, technical, and financial perspectives, the framework ensures that decision-making 

aligns with both sustainability goals and market realities. 

The numerical example demonstrated that hybrid renewable integration combined with DR 

significantly outperforms single-resource strategies in terms of efficiency and resilience. The 

integration of AI enhanced forecast accuracy, leading to more reliable decision outcomes. 

Policy implications suggest that energy operators and regulators should adopt AI-enabled MCDM 

tools to evaluate future scheduling strategies under multiple conflicting objectives. Future research 

may extend this framework using fuzzy MCDM methods, real-world datasets, and blockchain-

enabled DR mechanisms. 
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