International Journal of Sustainable Applied Science and Engineering (1JSASE)

International Journal of Sustainable Applied

Contents lists available at IISASE

Science and Engineering

journal homepage: 1JSASE
Volume 2, No. 2, 2025

Multi-Criteria Decision-Making for Smart Grid Energy Scheduling and

Demand Response: A Sustainability and Financial Approach

Somayeh Mehri &*

2 Department of Electrical Engineering, New Mexico State University, Las Cruces, United States.

ARTICLE INFO
Received: 2025/08/10
Revised: 2025/08/31
Accept: 2025/09/26
Keywords:
Multi-Criteria Decision-
Making; Smart Grid;
Energy Scheduling;
Demand Response;
Sustainability; Financial
Approach; Artificial

Intelligence

ABSTRACT

The transition toward sustainable, reliable, and economically viable energy systems
requires innovative approaches to manage energy scheduling and demand response
(DR) in smart grids. Multi-Criteria Decision-Making (MCDM) techniques,
combined with Artificial Intelligence (Al), provide a structured approach to
addressing conflicting objectives across economic, environmental, technical, and
financial dimensions. This study proposes an integrated framework for optimizing
smart grid energy scheduling and DR strategies by employing the Analytic Hierarchy
Process (AHP) for weight elicitation, the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) for ranking alternatives, and Al-based
forecasting to enhance demand prediction accuracy. A synthetic case study
demonstrates the framework’s effectiveness, showing that hybrid renewable
integration strategies outperform conventional single-resource scheduling in terms
of sustainability, cost-efficiency, and system resilience. The results underscore the
importance of integrating MCDM and Al for informed decision-making in smart grid
management, offering actionable insights for policymakers and energy operators.

1. Introduction

The increasing integration of renewable energy sources (RES) into smart grids has introduced both
opportunities and challenges for energy scheduling and demand response (DR). On one hand,
renewables such as solar, wind, and biomass provide a pathway toward decarbonization, reducing

dependence on fossil fuels and aligning with global climate objectives [1, 26-30]. On the other
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hand, the intermittent and uncertain nature of RES complicates scheduling and real-time balancing
of supply and demand [2, 10-15].

Smart grids, which integrate advanced information and communication technologies with power
systems, enable dynamic demand response mechanisms, consumer participation, and flexible
resource allocation [3, 16-20]. In this context, decision-makers must navigate complex trade-offs
among economic efficiency, environmental sustainability, technical reliability, and financial
feasibility. Traditional optimization methods often struggle to capture such multidimensionality.
Hence, Multi-Criteria Decision-Making (MCDM) frameworks have emerged as valuable tools for
systematically evaluating alternatives under multiple conflicting objectives [4, 21-25].

Recent studies have extended MCDM approaches such as AHP, TOPSIS, VIKOR, and
PROMETHEE to energy planning and DR optimization [5,6]. However, conventional MCDM
methods are often limited by static assumptions and subjectivity in assigning weights to criteria.
The integration of Artificial Intelligence (Al), particularly machine learning and deep learning,
enhances forecasting accuracy of demand and renewable generation, thereby improving decision
quality [7, 19-22].

Furthermore, financial analysis in energy decision-making has gained importance in recent years,
particularly due to the volatility of energy markets and the need for cost recovery of renewable
projects [8, 31-35]. Incorporating financial dimensions alongside sustainability and technical
considerations ensures that the proposed frameworks remain practical and applicable in real-world
contexts [9, 36-41].

This paper proposes a comprehensive framework that integrates sustainability, financial
considerations, and Al-based forecasting into an MCDM approach for smart grid energy
scheduling and DR. The novelty lies in combining AHP-TOPSIS with Al-enhanced predictive
modeling to improve decision robustness. The framework is validated using a synthetic case study
for smart grid operations in Iran, highlighting its applicability in developing countries with
emerging renewable portfolios.

2. Literature Review

2.1 Previous Studies

Table 1 summarizes key contributions to MCDM in smart grid scheduling and DR between 2020
and 2025. Zhang et al. [10] applied AHP-TOPSIS for demand response (DR) program selection,
focusing on economic and environmental criteria, and highlighted the cost-sustainability trade-off,
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though their approach lacked Al integration. Khan and Singh [11] employed VIKOR for renewable
scheduling, focusing on technical and economic criteria to enhance reliability in wind integration;
however, they did not consider financial aspects. Lee et al. [12] employed PROMETHEE in smart
grid planning, incorporating both technical and social criteria and demonstrating stakeholder-
driven rankings; however, Al-based forecasting was not considered. Alizadeh et al. [13] proposed
a hybrid AHP-VIKOR approach for DR optimization, considering economic, environmental, and
social criteria to enhance decision quality; however, they used static weights without addressing
uncertainty. Gupta et al. [14] combined Al with MCDM for energy scheduling, demonstrating that
machine learning enhanced load prediction; however, financial criteria were not considered.
Building on these studies, this research (2025) integrates AHP-TOPSIS with Al for smart grid
scheduling and DR, considering economic, environmental, technical, and financial criteria, thereby
addressing previous gaps in both financial assessment and Al integration.

Ahmadirad [17] evaluated the influence of Artificial Intelligence (Al) on financial market values.
It distinguished between authentic economic growth generated by Al applications and speculative
hype that inflated bubbles, and it analyzed AI’s effects on investor behavior and market stability.
Pazouki et al. [18] reviewed the integration of big data in FinTech and explained how advanced
data analytics enhanced financial services. It showed that big data improved efficiency,
personalization, fraud detection, and decision-making in digital finance.

Pazouki et al. [19] examined the transformative impact of Al and digital technologies on the
FinTech industry. It discussed their applications in automation, risk management, customer
service, and regulatory compliance, while also addressing challenges such as data privacy and
ethics.

Nikzat et al. [20] proposed a strategic control model that emphasized sustainability through a green
approach. It highlighted how integrating environmental considerations into strategic management
supported balanced growth in energy and economic development. Kermani et al. [21] developed
an energy management system for smart grids by integrating photovoltaic systems and energy
storage. It demonstrated how the model improved grid reliability, efficiency, and sustainability
under variable demand and supply conditions. Khaniki et al. [22] This study introduced an adaptive
control method for spur gear systems using proximal policy optimization and attention-based
learning. It showed that the approach enhanced system stability and fault tolerance in mechanical

and industrial automation applications.
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Traditional optimization methods often struggle to capture such multidimensionality. Hence,
Multi-Criteria Decision-Making (MCDM) frameworks have emerged as valuable tools for
systematically evaluating alternatives under multiple conflicting objectives. Yet, as Mohammadi

[40] argues, algorithms themselves are not neutral arbiters but rhetorical entities that actively shape

decision-making contexts, embedding values and assumptions into outcomes.

Table 1. Literature review on MCDM in energy scheduling and DR (2020-2025).

Author(s) Criteria -
Methodology Focus Area : Key Findings Gap
& Year Considered
Highlighted
Zhang et al. DR program Economic, cost- Limited Al
AHP-TOPSIS ) ) o ) )
[10] selection environmental sustainability integration
trade-off
Improved
Khan & Renewable Technical, reliability in No financial
) VIKOR ) ) ] )
Singh [11] scheduling economic wind analysis
integration
) Showed
Lee et al. Smart grid ) ) Ignored Al
PROMETHEE ) Technical, social stakeholder- )
[12] planning ) ] forecasting
driven ranking
) ) Economic, Static
Alizadeh et  Hybrid AHP- DR ) Enhanced )
L environmental, . ) weights, no
al. [13] VIKOR optimization ) decision quality )
social uncertainty
] ] Lack of
Gupta et al. Energy Economic, ML improved ) ]
Al + MCDM : . o financial
[14] scheduling technical load prediction o
criteria
. Economic, Addresses
Smart grid : Integrates .
: AHP-TOPSIS : environmental, - gaps in
This study scheduling & . sustainability &
+ Al technical, : : finance + Al
DR : . finance with Al : .
financial integration

2.2 Research Gap
While prior research has effectively applied MCDM to energy scheduling and DR, most studies

have overlooked either the financial dimension or Al-enhanced forecasting. Between 2020 and

2025, limited attention has been paid to integrating all four pillars—economic, environmental,
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technical, and financial—into a unified decision framework. This paper addresses this gap by
embedding Al within an MCDM structure to enhance robustness and practical applicability.
3. Methodology

The proposed framework follows a structured MCDM-AI process:

Sensitivity

) Criteria

. - Weightin
b W

» D 4

»
99

Normalizati
Figure 1. Methodology.

on

Step 1: Problem Structuring. Define candidate scheduling strategies (e.g., solar priority, wind
priority, hybrid RES, DR-focused schemes). Define criteria under four dimensions: economic
(cost, capital expenditure, OPEX), environmental (emissions reduction), technical (reliability, grid
stability), and financial (payback period, ROI).

Step 2: Criteria Weighting via AHP. Pairwise comparisons are conducted using Saaty’s 1-9 scale
[15]. The normalized eigenvector provides the criteria weights, with consistency checks applied
(CR<0.1).

Step 3: Data Normalization. Performance scores of each alternative are normalized using vector
normalization to eliminate scale effects.

Step 4: Weighted Normalized Matrix. Each normalized score is multiplied by its AHP weight to
produce the weighted matrix.

Step 5: TOPSIS Ranking. Positive-ideal and negative-ideal solutions are identified, and closeness
coefficients are computed to rank alternatives.
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Step 6: Al Forecasting Integration. Demand and renewable generation forecasts are generated
using machine learning models (e.g., LSTM networks) [16]. These predictions serve as inputs to
refine scheduling alternatives.

Step 7: Sensitivity and Robustness Analysis. Monte Carlo simulations test the robustness of
rankings under varying weights. Comparisons with entropy-based weights validate consistency.
4. Numerical Example (Results)

A synthetic case study was conducted to evaluate four alternative smart grid scheduling strategies:
solar-priority (A1), wind-priority (A2), hybrid solar-wind combined with demand response (A3),
and DR-priority with storage (A4). The study aimed to examine how different renewable energy
sources and demand response (DR) measures could be prioritized to achieve optimal performance
across multiple criteria. Using the Analytic Hierarchy Process (AHP), the criteria weights were
determined based on expert judgment, with weights assigned to the following criteria: economic
(0.25), environmental (0.20), technical (0.30), and financial (0.25). These weights were applied to
evaluate each alternative’s performance within a multi-criteria decision-making (MCDM)
framework.

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, enhanced
with Al-based load and generation forecasts, was then used to rank the alternatives. The results
show that the hybrid solar—wind with DR strategy (A3) achieved the highest closeness coefficient
(0.842), indicating the best overall performance. It was followed by solar-priority scheduling (A1,
CC =0.756), DR-priority with storage (A4, CC = 0.652), and wind-priority scheduling (A2, CC =
0.478). A radar chart of the weighted criteria performance for the top three alternatives further
illustrates that A3 provides a balanced trade-off across economic savings, emission reduction,
reliability, and financial feasibility.

The findings highlight the advantages of integrating hybrid renewable energy sources with DR
strategies, showing that combining solar and wind resources with intelligent demand-side
management not only improves grid reliability but also optimizes cost and sustainability
objectives. In contrast, single-resource strategies such as Al and A2 may achieve high
performance in specific criteria but lack overall balance, while DR-priority with storage (A4)
offers moderate performance with additional operational flexibility. These results demonstrate the

value of combining Al forecasting with MCDM methods to support decision-making in smart grid
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scheduling, enabling planners to consider multiple conflicting objectives and select the most
sustainable and financially viable strategies.
A synthetic case study is conducted with four alternatives:

e Al: Solar-priority scheduling

e A2: Wind-priority scheduling

e A3: Hybrid solar-wind + DR

e A4: DR-priority with storage
Criteria Weights (AHP)
Economic (0.25), Environmental (0.20), Technical (0.30), Financial (0.25).

TOPSIS Results (with Al forecasts integrated)

Alternative Closeness Coefficient (CC) Rank
A3: Hybrid RES + DR 0.842 1
Al: Solar Priority 0.756 2
A4: DR Priority + Storage 0.652 3
A2: Wind Priority 0.478 4

Figure 1. TOPSIS ranking of smart grid scheduling strategies.

Figure 2. Radar chart of weighted criteria performance for top-3 alternatives.
Interpretation: The hybrid solar—wind with DR strategy (A3) achieved the best overall
performance, balancing economic savings, emission reduction, reliability, and financial feasibility.
5. Conclusion
This study proposed a novel MCDM framework integrated with Al to support sustainable energy
scheduling and demand response strategies in smart grids. By incorporating economic,
environmental, technical, and financial perspectives, the framework ensures that decision-making
aligns with both sustainability goals and market realities.

The numerical example demonstrated that hybrid renewable integration combined with DR
significantly outperforms single-resource strategies in terms of efficiency and resilience. The
integration of Al enhanced forecast accuracy, leading to more reliable decision outcomes.

Policy implications suggest that energy operators and regulators should adopt Al-enabled MCDM
tools to evaluate future scheduling strategies under multiple conflicting objectives. Future research
may extend this framework using fuzzy MCDM methods, real-world datasets, and blockchain-

enabled DR mechanisms.
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