International Journal of Sustainable Applied Science and Engineering (1JSASE)

Contents lists available at IJISASE

International Journal of Sustainable Applied

Science and Engineering
journal homepage: IJISASE
Volume 2, No. 1, 2025

Beyond the Black Box: A Review of Quantitative Metrics for Neural

Network Interpretability and Their Practical Implications

Maryam Esna-Ashari @

@ Department of the Property and Casualty Insurance, Insurance Research Center, Tehran, Iran

ARTICLE INFO ABSTRACT

Received: 2024/12/07 As neural networks continue to grow in complexity and find applications in

Revised: 2025/01/05 critical domains such as healthcare, finance, and autonomous syste_ms, the
demand for transparent and trustworthy Al has never been greater. This paper

Accept: 2025/02/09 provides a comprehensive review of quantitative metrics used to evaluate the

Keywords: interpretability of neural networks, focusing on key measures—fidelity,

complexity, robustness, and sensitivity—and examining their respective
advantages, limitations, and suitability across different model architectures.
In addition, the review explores major challenges in interpretability

Neural network
interpretability,
Quantitative

interpretability metrics, assessment, including data quality, bias, scalability, and generalizability,
Fairness in Al, Fidelity, while highlighting emerging approaches such as causal and interactive
Explainability. interpretability. By addressing these core issues and advancements, the paper
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accountable and trustworthy Al-driven decision-making systems.

1. Introduction

Neural networks, particularly deep learning models, are increasingly being deployed in critical sectors such
as healthcare, finance, and autonomous systems. In these high-stakes environments, the ability to
understand and explain a model’s decision-making process, commonly referred to as interpretability, has
become imperative [4]. Interpretability not only enables stakeholders to trust and validate model outputs,
but also ensures alignment with human values and ethical standards. For instance, in healthcare

applications, model-driven decisions can carry profound consequences for patients, making transparent
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reasoning essential for both clinicians and regulatory bodies [11]. However, deep neural networks typically
involve numerous laysers and vast numbers of parameters, which interact in complex and highly nonlinear
ways. Tracing how specific inputs lead to specific outputs thus becomes a formidable challenge [33]. Unlike
traditional machine learning algorithms such as decision trees or linear regressions, neural networks are
often characterized as “black-boxes” due to the opacity of their internal processes. This opacity can mask
spurious correlations or hidden biases that remain undetected, even if the model’s predictions appear
accurate on the surface [22]. Consequently, there is a growing need for robust interpretability metrics that
can ascertain whether a model’s internal logic aligns with human reasoning and domain knowledge.
However, defining and developing such metrics is inherently difficult, as interpretability itself is a
multifaceted and context-dependent concept [33]. Models optimized for maximum accuracy can sacrifice
transparency, highlighting the inherent tension between performance and explainability. In response,
researchers have proposed a variety of quantitative interpretability measures aimed at providing objective,
repeatable, and scalable assessments. While qualitative methods—such as visualizations or narrative
explanations—can offer valuable insights, they alone may not suffice in domains requiring rigorous
validation over large datasets or ongoing monitoring [4, 56].

This paper aims to review and evaluate quantitative metrics that address these challenges by systematically
examining their strengths, limitations, and applicability across a spectrum of neural network architectures
and real-world applications. In addition to covering established metrics (e.g., fidelity, complexity,
robustness), we consider advanced topics such as the dynamic, evolving nature of neural networks in online
or streaming contexts. As models update their parameters in response to new data, their decision-making
criteria can change over time, an aspect often overlooked by static interpretability approaches [31].
Furthermore, interpretability in ensemble models introduces another layer of complexity, where multiple
networks or heterogeneous machine learning algorithms collectively influence the final decision. Hence,
the development of innovative metrics capable of capturing both individual and collective model behavior
has become increasingly crucial [54]. By highlighting these core challenges and exploring emerging
methodologies, this article contributes to the ongoing effort to balance high performance with meaningful
transparency in neural network—based systems. The ultimate goal is to increase accountability, foster user
trust, and support responsible Al deployment in mission-critical domains.

1.1 Core Principles: Definitions and Terminology

According to Miller [39], interpretability in neural networks is often defined as the degree to which humans
can understand or contextualize the internal reasoning of a model. Although this high-level definition
captures the essence of making neural network decisions more transparent, researchers commonly break
the concept down into more specific elements [16, 22]. For example, transparency focuses on inherent

clarity regarding a model’s structure and mechanisms, as seen in simpler algorithms like linear regression
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or decision trees [33]. By contrast, Doshi-Velez et al. [16] denotes that explainability involves post-hoc
methods—such as feature importance analysis or local approximations—to clarify how complex “black-
box” models arrive at their outputs.

According to Carvalho et al. [12], it is helpful to view interpretability as a broader umbrella that covers
both transparency and explainability, while also encompassing the subjective aspect of whether end users
can trust the decisions of a model. Achieving complete transparency in deep learning models is particularly
challenging, given that their decision-making logic is distributed across multiple layers of nonlinear
transformations [22, 33]. These architectures often achieve high accuracy but remain opaque, highlighting
the tension between performance and understandability in applications where accountability is paramount
(e.g., healthcare or autonomous systems). Consequently, researchers and practitioners increasingly rely on
explainability techniques to offer at least partial insight into why a network makes certain predictions, even
if the model itself remains complex [4]. As neural networks become more prevalent in safety-critical or
ethically sensitive domains, interpretability strategies—spanning from intrinsic transparency to post hoc
explanations—are critical for fostering user trust and ensuring that model outputs align with societal and
regulatory expectations.

1.2 Foundational Theories

As neural networks grow increasingly complex, it becomes insufficient to rely solely on qualitative
assessments, such as visualizations or case studies, to gauge interpretability [12, 56]. While these qualitative
methods offer valuable insights into how a model processes information, they often lack the comprehensive,
objective, and scalable nature required in high-stakes domains like healthcare and finance [40]. In these
environments, continuous monitoring and comparison of interpretability are essential for ensuring trust,
fairness, and accountability [3]. Quantitative metrics address this need by offering more standardized ways
to evaluate interpretability, enabling consistent cross-model comparisons. They measure various facets of
interpretability, including how much information is needed to explain a decision or how well a simplified
model can approximate a more complex one. For instance, some metrics focus on the number of features
required to justify a prediction, while others assess how closely a surrogate model replicates the original
network’s decision-making process [4].

The impact of these metrics is most evident in deep neural networks, which tend to function as “black-
boxes” when viewed purely through introspection or basic visual analysis [56]. By quantifying
interpretability, researchers can more readily identify and mitigate hidden biases or erratic behaviors—
challenges especially critical in safety-sensitive applications. Additionally, such metrics facilitate the
creation of benchmarks for interpretability, enabling Al systems to become more transparent and

trustworthy without necessarily sacrificing performance [3]. In high-risk settings, the systematic application
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of quantitative interpretability measures thus becomes paramount for ensuring that neural network—driven
decisions remain robust and reliable.

Alongside these quantitative considerations, an equally important dimension of interpretability is rooted in
cognitive science [34]. Understanding how people process and internalize explanations helps shape
interpretability metrics that are both mathematically sound and intuitively meaningful. Kulesza et al. [30]
suggest that humans often prefer explanations emphasizing key causal factors over exhaustive detail,
aligning with the concept of “cognitive chunks”—the manageable information units we use to form mental
models. By incorporating these cognitive principles, it is possible to design metrics that more closely mirror
how human users naturally seek out explanations. For example, methods assessing whether an Al-generated
justification matches human-style causal reasoning—or how effectively it highlights critical comparisons
(e.g., “why this outcome rather than another?”’)—can lead to explanations that feel more accessible and
relevant.

Recent works in cognitively inspired interpretability aims to bridge these human and computational
perspectives [26]. One emerging approach, known as cognitive grounding, structures Al explanations
around existing human knowledge and mental schemas [9]. This means that evaluative criteria go beyond
simply measuring accuracy or simplicity; they also gauge how well the explanation resonates with user
expectations. Moreover, insights from visual attention research have prompted refinements to saliency map
techniques, making them more reflective of how humans actually perceive and prioritize visual information
[25]. By drawing on cognitive psychology and user-centric design principles, quantitative interpretability
metrics can be adapted to produce explanations that are not only rigorous in their attribution of features but
also well-aligned with human reasoning processes. This interdisciplinary approach promises to enhance the
transparency, usability, and overall trustworthiness of neural networks—particularly in high-stakes
applications where the clarity of a model’s decisions can be as important as its accuracy.

1.2.1 Formal Approaches to Interpretability

As neural networks continue to be deployed in critical domains such as healthcare, finance, and autonomous
systems, there is a growing demand for rigorous, mathematically grounded approaches to interpretability.
Formal methods offer a structured and verifiable means of understanding how models arrive at their
decisions, ensuring that explanations are not only intuitive but also provably correct [8]. Unlike heuristic-
based techniques, formal approaches leverage logical reasoning, theorem proving, and mathematical
abstraction to analyze and verify interpretability metrics. These methods are particularly valuable in high-
stakes applications where interpretability must be trustworthy, reproducible, and resistant to adversarial
manipulation.

Verification and Mathematical Rigorousness: Formal interpretability approaches often focus on model

verification, ensuring that explanations hold under a broad range of conditions [17]. For instance, logic-
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based reasoning frameworks can be used to express and verify interpretability constraints. Consider a neural
network tasked with medical diagnosis: a formal verification system can confirm that specific feature
attributions (e.g., a symptom’s relevance to a disease classification) remain consistent across different
patient cohorts. This ensures that the model’s decision-making process is not influenced by unintended
biases or spurious correlations.

Structured Frameworks and Compositionality: One of the key challenges in interpretability is dealing
with the compositional complexity of deep networks. Formal approaches aim to break down the network
into interpretable submodules, where each layer or function can be independently analyzed. Automated
reasoning tools, such as symbolic execution and abstract interpretation, help decompose the learned
representations, making it easier to derive human-interpretable rules that govern the model’s behavior [20].
These methods facilitate a deeper understanding of layer-wise transformations and hierarchical feature
extraction, which are often obscured in conventional deep learning pipelines.

Integration of Formal Methods with Existing Metrics: While many interpretability techniques focus on
post-hoc analysis—such as feature attribution methods like SHAP or LIME—formal approaches embed
interpretability constraints directly into the model design, ensuring that explainability is not merely an
afterthought but an inherent property of the system [46]. One key direction in this space involves constraint-
based interpretability, where domain-specific rules, such as monotonicity constraints in financial risk
assessment models, are encoded into the network structure. This approach ensures compliance with human
intuition and regulatory requirements while maintaining predictive accuracy. Another promising avenue
integrates symbolic and rule-based reasoning to represent neural network decision functions as logical
expressions or decision rules, making the model’s behavior more transparent and verifiable. This method
aligns particularly well with explainability needs in domains where decisions must be explicitly justified,
such as healthcare diagnostics or legal applications. Additionally, probabilistic formalism provides a
complementary perspective by employing Bayesian inference and probabilistic graphical models to
guantify uncertainty in model explanations. These approaches allow researchers to better assess the
reliability of interpretability outputs, ensuring that explanations remain robust even under data shifts or
adversarial perturbations.

Formalizing Interpretability through Mixed-Integer Programming: A foundational perspective on
interpretability is presented by Aftabi et al. [2], where neural networks are formulated as mixed-integer
programs (MIPs) to enable a structured, optimization-based approach to explainability. This formulation
captures the piecewise linear characteristics of ReLU activations and other network components, allowing
researchers to systematically analyze a model’s decision boundaries and feature interactions. By articulating

network behavior through a set of linear constraints and binary variables, this method provides a rigorous
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mathematical framework for interpretability, complementing traditional metrics such as fidelity and
complexity while also facilitating verifiable robustness and fairness assessments.
Unlike empirical interpretability methods that rely on post-hoc approximations, MIP-based approaches

provide exact insights into network decision-making. By precisely characterizing how neural networks
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Figure 1. Classification of Interpretable Methods Across Key Dimensions.

partition input space, this methodology offers a deeper understanding of model predictions and the factors
influencing them. This capability is particularly relevant in regulated or high-stakes applications where
explainability is crucial for ensuring transparency, accountability, and compliance with ethical standards.
Furthermore, by integrating formal verification techniques with cognitively informed interpretability
metrics, MIP-based methods extend the scope of what can be reliably understood about neural network
models. In doing so, they reinforce the role of optimization techniques not just as tools for improving
performance but also as essential mechanisms for achieving greater interpretability in complex Al systems.
2. Measuring Interpretability: Framework and Metrics

2.1 Types of Quantitative Interpretability Metrics

Quantitative interpretability metrics are essential for evaluating the comprehensibility and
effectiveness of machine learning models. These metrics can be categorized into several types,
each serving a specific purpose in assessing how interpretable a model is. Interpretability
techniques can be broadly classified into two categories: intrinsic interpretability and post-hoc
interpretability. Intrinsic interpretability involves using inherently understandable models, such as
linear models or decision trees, which provide clear insights into the relationships between inputs
and outputs [12]. Post-hoc interpretability, on the other hand, applies to complex models where
interpretability methods are used after the model has been developed to explain its behavior and
predictions [42]. Figure 1 summarizes key characteristics of different interpretability methods,
emphasizing their complexity, domain dependency, and computational requirements.

Feature Importance: Feature importance metrics evaluate the relative impact of different features
on the predictions made by a model. They help identify which features significantly influence

outcomes and can guide decisions on data preprocessing or feature selection. Common methods
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for calculating feature importance include Gini importance and permutation importance, which
quantify each feature’s contribution to the model’s predictive accuracy [12]. These metrics are
crucial for understanding model behavior and enhancing interpretability.

Visualization Techniques: According to [56], visualization techniques are employed to present
the relationships between features and model predictions clearly. Tools like decision trees,
heatmaps, and partial dependence plots provide intuitive insights into how features interact and
contribute to outcomes [29, 42]. For instance, decision trees offer a straightforward representation
of decision paths based on feature values, while heatmaps can illustrate feature activation and
attention in deep learning models. Such visual aids make it easier for users to grasp complex
relationships within the data.

Explanation Types: Explanations can be classified into local and global types, which cater to
different interpretability needs. Local explanations pertain to individual predictions, while global
explanations provide insights into the model as a whole [53]. Different explanation methods yield
various types of outputs, such as rule lists or graphical representations, allowing for diverse
approaches to understanding model decisions.

Evaluation Metrics for Interpretability: When assessing the interpretability of a model or its
explanations, specific evaluation metrics can be employed. These may include intuitiveness,
determinism, generalizability, and faithfulness [36]. Intuitiveness ensures that the metric is easily
understandable, while determinism guarantees consistent outputs given the same inputs.
Generalizability indicates the metric’s applicability across different models, and faithfulness
reflects the alignment of the metric with the model’s decision-making process.

Consistency: The consistency of interpretations across various attribution methods is also an
important consideration. Metrics that evaluate the goodness of attribution maps—both at the
instance level and globally—can be employed to judge whether different explanation methods
yield coherent results. This approach enhances trust in the interpretability of machine learning
models by ensuring that explanations are consistent and reliable [43]. By utilizing these diverse
types of quantitative interpretability metrics, researchers and practitioners can effectively assess
and enhance the interpretability of machine learning models, fostering trust and understanding
among stakeholders.

2.2 Model-Faithful Explanations (Fidelity)
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Fidelity metrics are essential for evaluating interpretability in neural networks, as they measure
how accurately an explanation reflects the model’s true decision-making process [28]. Often
referred to as faithfulness, fidelity indicates whether an interpretability method faithfully captures
the logic underlying the model’s predictions rather than presenting a distorted or oversimplified
view. High-fidelity explanations are especially crucial in high-stakes settings, such as healthcare
and finance, where user trust in the model’s reasoning can significantly impact outcomes.

One prominent example illustrating the importance of fidelity is LIME (Locally Interpretable
Model-Agnostic Explanations) [44]. LIME uses a local linear surrogate model to approximate the
predictions of a more complex “black-box” model for specific data points [44]. The degree to
which this surrogate’s predictions align with those of the original model indicates how faithful its
explanations are. When alignment is high, LIME accurately mirrors the original model’s decision-
making logic; if alignment is low, the resulting explanations may mislead users into believing the
model relies on factors that do not actually drive its predictions. Consequently, fidelity metrics are
indispensable for determining whether an explanation genuinely reflects the inner workings of a
neural network. Without them, explanations can easily become misleading, eroding user
confidence and potentially causing harmful misinterpretations in mission-critical applications.
2.3 Complexity and Comprehensibility

Complexity metrics gauge how easily humans can understand a model’s explanations by
quantifying factors such as the number of features involved, the depth of decision paths, and the
overall cognitive load on the user [18]. Generally, simpler explanations are more desirable, as they
reduce the mental effort required to grasp how the model generates its outputs. For example, a
decision tree’s interpretability can be assessed by examining its maximum depth—shorter trees
with fewer branching features tend to be more transparent. Similarly, rule-based models can be
evaluated according to the number and length of their rules; larger or more intricate rule sets
typically impose greater cognitive demands.

In neural networks, complexity measures often center on identifying the key input features that
significantly influence a model’s predictions [13]. Feature attribution techniques, such as Shapley
values or Integrated Gradients [50], help determine whether the network relies on a small,
interpretable subset of inputs or a broader, more opaque interaction of features. Although highly
complex models may offer superior accuracy, their opacity can undermine trust—particularly in

high-stakes domains like healthcare or finance, where stakeholders require a clear understanding
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of automated decisions. By employing complexity metrics, practitioners can balance model
performance with interpretability, ensuring that Al-driven outcomes remain both efficient and
comprehensible for end users.

2.4 Reliability and Robustness

Reliability and robustness are critical aspects of interpretability, particularly in high-stakes
domains where fluctuating or inconsistent explanations can quickly erode confidence in Al-driven
systems [5]. Two complementary dimensions of robustness include how explanations respond to
small input changes and how they adapt over time as models learn continuously.

Stability and Consistency: Stability metrics evaluate whether minor modifications in input data
lead to dramatically different explanations [12]. In high-stakes scenarios, such as healthcare
diagnoses or financial assessments, an interpretability method that yields vastly different
explanations for nearly identical inputs can undermine trust and suggest that the model is overly
sensitive to small perturbations. To measure stability, researchers often examine the variance in
explanations when input features are slightly altered, using techniques such as adversarial tests or
sensitivity analysis [12]. Consistently high variance can indicate unreliable feature attribution or
latent vulnerabilities in the model. By embedding stability and consistency checks into an
interpretability framework, practitioners can ensure explanations remain coherent and dependable,
even as underlying data shifts incrementally.

Temporal Consistency: As neural networks are increasingly deployed in dynamic environments,
where models continuously learn and adapt, a second layer of robustness revolves around the
stability of explanations over time. Temporal consistency metrics track whether a model’s
explanations remain coherent across different iterations or updates—an especially important
concern in online learning or frequently retrained systems [27]. One approach, the Temporal
Stability Index (TSI), measures how much feature importance fluctuates across successive model
versions [22]. A low TSI typically indicates stable decision-making criteria, whereas a high TSI
may signal significant shifts in feature importance over time. Similarly, the Explanation Drift Rate
(EDR) quantifies how quickly explanations for similar inputs diverge across model updates [22].
Sudden spikes in EDR can reveal concept drift or structural changes in how the network processes
information.

By incorporating both stability and temporal consistency assessments, researchers and

practitioners can better detect when a model’s interpretation pipeline becomes susceptible to noise
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or begins to rely on newly introduced but potentially spurious patterns. This dual focus on small-
scale perturbations and longitudinal changes is vital for maintaining trustworthy, real-world Al
systems. In contexts ranging from personalized healthcare to automated trading, robust
interpretability measures not only clarify current model behavior but also help anticipate future
shifts—ensuring that evolving neural networks remain transparent, reliable, and aligned with user
expectations.

2.5 Feature Attribution and Sensitivity

Feature attribution and sensitivity metrics focus on how variations in input features influence a
model’s predictions, as well as how these effects are reflected in explanatory outputs [36]. By
quantifying each feature’s contribution, these metrics not only highlight the most significant
drivers of a model’s decisions but also reveal how sensitive the model is to changes in individual
inputs. In doing so, they help ensure the model behaves consistently and aligns with domain-
specific knowledge and user expectations.

One well-known approach to feature attribution is based on Shapley values, which originate from
cooperative game theory and provide a theoretically grounded method for distributing the
contribution of each feature to the final prediction [46, 50]. A feature’s sensitivity can be assessed
by examining the fluctuation in its Shapley value when the underlying input changes. Beyond
Shapley values, methods such as Integrated Gradients and LIME offer additional frameworks for
assigning feature importance, each with distinct strengths and limitations [44]. These attribution
and sensitivity analyses are particularly critical in high-dimensional or complex models, where the
roles of individual features are not immediately evident. By systematically applying these metrics,
researchers and practitioners can uncover potential biases, detect inconsistencies in a model’s
decision-making process, and ultimately enhance the transparency and trustworthiness of Al-
driven applications.

3. Evaluating Interpretability in Practice

3.1 Empirical Validation and Case Examples

Empirical validation is crucial for determining how effectively quantitative interpretability metrics
capture the decision-making processes of neural networks. In a typical experimental setup,
researchers train a network on a benchmark dataset—such as MNIST, CIFAR-10, or one from the
UCI Machine Learning Repository—using architectures like convolutional or recurrent neural

networks. They then apply interpretability methods, for example LIME or SHAP, to generate
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explanations. These explanations are subsequently evaluated using a combination of metrics:
fidelity measures how closely the surrogate explanations align with the model’s true decision-
making process, complexity gauges the simplicity and comprehensibility of the generated
explanations, and robustness and stability tests whether minor changes in the input data lead to
drastically different explanations. By employing such a framework, researchers can systematically
compare how various metrics perform under controlled conditions.

In addition to these standardized evaluations, case studies in real-world applications provide
critical qualitative insights into how well interpretability metrics translate to practical settings. In
healthcare, for instance, neural networks trained on electronic health records (EHRS) to predict
patient outcomes have been examined through metrics like fidelity, complexity, and robustness
[11]. Such metrics help verify whether explanations accurately reflect the model’s reasoning,
determine whether those explanations are clear enough for clinicians to interpret and act upon, and
ensure that minor variations in patient data do not significantly alter the model’s justifications.
This approach reinforces reliability in clinical decision-making and bolsters trust in Al-driven
diagnoses.

Similarly, in finance, interpretability metrics are applied to credit scoring models to validate
transparency and fairness in automated lending decisions [36]. Fidelity analyses check if
predictions are grounded in meaningful features such as income or credit history, while attribution
and sensitivity methods reveal whether irrelevant or biased inputs play a role in the final outcome.
Stability measures, in turn, confirm that minor changes in an applicant’s data do not unfairly alter
creditworthiness assessments. By demonstrating accountability and ensuring consistent treatment
across similar cases, these techniques promote fairer financial services. In general, empirical
testing, coupled with domain-specific case studies, underscores the importance of quantitative
interpretability metrics for validating and refining Al models across diverse contexts. By
integrating both quantitative benchmarks and practical insights, researchers and practitioners can
better guarantee that neural networks remain accurate, transparent, and reliable in real-world
applications.

3.2 Comparative Analysis

Each interpretability metric offers distinct advantages and limitations, making certain methods
more suitable than others depending on the application context. Fidelity metrics, for instance, excel

in verifying that explanations truly reflect a model’s decision-making process—an aspect critical
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in high-stakes scenarios like healthcare diagnostics or autonomous systems, where precision and
trust are paramount. However, focusing on fidelity alone may not capture how easily humans can
understand an explanation. In situations where usability and intuitive clarity are key—such as
consumer-facing Al systems or clinical decision-support tools—complexity metrics become
essential for assessing whether an explanation is sufficiently simple to be grasped by non-experts
[12].

Robustness and stability metrics, meanwhile, address the need for consistent, repeatable outputs.
These measures are particularly relevant in regulated or legal environments, where decisions must
be justifiable across similar cases. Nevertheless, robustness alone may not clarify the underlying
reasons for a given output. In domains such as personalized medicine, credit scoring, or targeted
marketing, sensitivity and attribution methods, including Shapley values, play a pivotal role. They
determine which features most significantly influence predictions, ensuring that decisions align
with domain-specific knowledge and fairness requirements [5].

Choosing the right interpretability metric or combination thereof ultimately depends on each task’s
specific requirements. Sensitive healthcare applications, for example, may benefit from pairing
fidelity metrics with complexity assessments to ensure both accuracy and comprehensibility in
clinical decision-making. On the other hand, financial contexts—Ilike credit scoring or fraud
detection—may demand robust explanations that withstand regulatory scrutiny, making stability
and attribution measures more critical. By aligning interpretability strategies with the nuances of
each domain, practitioners can maintain transparent, trustworthy, and domain-tailored Al solutions
across diverse real-world scenarios.

3.3 Tools and Software Ecosystem

A variety of tools and frameworks facilitate the assessment of interpretability using quantitative
measures, providing practical methods for generating and evaluating explanations. One of the most
widely used options is LIME, which explains individual predictions by fitting a simple,
interpretable surrogate model around the local neighborhood of the original complex model. LIME
is particularly valuable for assessing fidelity and complexity, as it allows researchers to determine
how closely the surrogate’s behavior matches that of the underlying model and how easily its
explanations can be understood [44].

Another popular framework is SHAP, which leverages Shapley values to provide accurate,
consistent feature attributions [36]. SHAP proves especially effective in evaluating sensitivity and

12
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attribution metrics, thanks to its unified approach for quantifying the importance of each input
feature across different types of models. Beyond LIME and SHAP, libraries such as Captum and
Alibi also offer extensive toolsets for various interpretability techniques. Captum is designed for
PyTorch and includes methods like Integrated Gradients and Feature Ablation, both of which are
useful for assessing robustness and stability. Alibi, on the other hand, is an open-source Python
library that supports counterfactual explanations and adversarial detection, contributing additional
insights into model stability and reliability. By integrating these tools into their workflows,
researchers and practitioners can establish consistent benchmarks for interpretability across
diverse neural network architectures and application domains. This shared ecosystem ensures that
Al models remain transparent and interpretable while also aligning with the operational needs and
constraints of real-world use cases.

4. Domain-Specific Perspectives

Neural networks are increasingly adopted in high-stakes fields, making interpretability a vital
concern for ensuring trust, compliance, and safety. In medical diagnostics, for example, clinicians
must validate Al-driven predictions before making decisions that can significantly impact patient
outcomes [19, 49]. Fidelity metrics help confirm that the factors influencing diagnostic
predictions—such as specific symptoms or test results—are indeed the ones driving the model’s
outputs, thereby preventing reliance on spurious correlations. Complexity metrics also play a
crucial role, since overly detailed explanations can slow down urgent clinical decisions. By
contrast, simpler and more transparent explanations support swift, accurate judgment. At the same
time, robustness and stability measures guard against erratic responses to minor perturbations in
patient data, thus promoting consistent, trustworthy performance in healthcare settings.

In the financial sector, interpretability is central to risk assessment, fraud detection, and automated
decision-making, especially given strict regulatory requirements [6, 14]. Fidelity metrics verify
that credit scoring models rely on legitimate factors such as credit history or income rather than
irrelevant or unethical criteria. Complexity measures ensure that stakeholders—Ilike loan officers
and auditors—can readily understand and scrutinize model explanations. Sensitivity and
attribution metrics, including Shapley values, help identify key features driving fraud detection
algorithms, enabling financial institutions to pinpoint suspicious transactions and justify their

decisions [32]. Robustness assessments further maintain consistent treatment of applicants with
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similar financial profiles, thereby reducing bias and enhancing fairness in lending and other
financial service [16].

Beyond healthcare and finance, interpretability metrics play a key role in cybersecurity, where
explainability is essential for identifying potential adversarial threats and improving model
robustness against attacks [41]. Understanding the reasoning behind an anomaly detection
system’s alert, for instance, allows security teams to distinguish between genuine threats and false
positives more effectively [1]. Fidelity metrics ensure that the model’s explanations align with the
underlying security threats, while stability assessments confirm that the detection logic remains
consistent under minor variations in attack patterns.

In autonomous systems, trust in decision-making is paramount, particularly in self-driving cars,
drones, and robotic automation [47, 55]. Interpretability techniques help ensure that Al-driven
navigation systems make decisions based on legitimate environmental cues rather than spurious
correlations. Complexity reduction methods allow engineers to analyze decision pathways,
ensuring that models remain comprehensible without sacrificing critical functionality. Robustness
evaluations further contribute by detecting whether slight changes in inputs—such as lighting
variations or sensor noise—cause disproportionate shifts in model behavior. By maintaining
transparency in decision-making, interpretability metrics improve both safety and public
acceptance of autonomous systems.

Energy systems also benefit from explainability, particularly in optimizing power consumption,
forecasting demand, and integrating renewable energy sources [10, 15, 37]. Neural networks used
in energy management must provide clear justifications for their predictions and
recommendations, ensuring that power distribution models remain both efficient and interpretable.
Sensitivity analysis helps identify the most influential variables driving energy predictions,
ensuring that optimization strategies align with real-world constraints. By improving
interpretability, Al models in the energy sector can provide more reliable guidance for balancing
grid demand and supply, ultimately supporting the transition to sustainable energy systems.
Industrial Al applications, including predictive maintenance and manufacturing process
optimization, similarly rely on interpretability metrics to ensure transparent decision-making [2,
24]. When Al models predict equipment failures or recommend process adjustments, clear
explanations are necessary for engineers and operators to trust and act on these insights. Feature

attribution techniques allow practitioners to pinpoint the critical variables influencing a failure
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prediction, ensuring that maintenance strategies are both data-driven and actionable. Complexity
metrics further ensure that the generated explanations remain practical and accessible to non-
specialists, facilitating effective decision-making on the factory floor.

Table 1 provides a comparative framework summarizing the strengths, limitations, and
applications of key interpretability metrics across various domains. This overview consolidates the
different dimensions of interpretability, offering a structured reference for researchers and
practitioners seeking to evaluate or implement these metrics in real-world Al applications. Across
these diverse sectors, interpretability metrics form a crucial foundation for building Al models that
meet ethical, legal, and social expectations. Ensuring that explanations are accurate, transparent,
and consistent enhances user trust, simplifies compliance, and contributes to safer, more
accountable decision-making. As Al technologies evolve and become further integrated into
complex environments, more advanced interpretability metrics will be needed to address emerging
challenges. A balanced approach—one that does not sacrifice performance for understandability—
remains essential, and standardizing interpretability assessment across industries will be key to
fostering confidence and facilitating regulatory alignment. By prioritizing interpretability in Al
development, researchers and practitioners can achieve solutions that maintain high accuracy

while also supporting transparency, fairness, and user trust in real-world applications.

Table 1. Comparative Framework for Interpretability Metrics.

_ _ General
Metric High-Level

Strengths Weaknesses o Advantage

Name Application o
/Limitation
Accurately High fidelity

May not capture
reflects model ensures
_ user- Healthcare, _
behavior; ensures _ _ trustworthiness, but
o ) ) comprehensible finance,
Fidelity explanations align | ) complex models
) insights; requires autonomous .
with true o _ may still be
o ) validation with systems. o
decision-making difficult to
) model outputs. )
logic. interpret.
_ Enhances human | Can oversimplify Decision- Strikes a balance
Complexity _ ]
understanding; model behavior, support between
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) ) General
Metric High-Level
Strengths Weaknesses o Advantage
Name Application L
/Limitation
evaluates the potentially leading | systems, legal | transparency and
cognitive load to loss of Al, consumer- | usability; overly
required to important details. facing simplistic models
comprehend applications. may lack
explanations. expressiveness.
Ensures
Measures stability | High robustness ) consistency in
_ o Adversarial _
of explanations may conflict with explanations, but
- defenses, o
Robustness across small model adaptability; - may limit
o ) safety-critical )
perturbations in does not directly o responsiveness to
) applications. )
input data. assess accuracy. meaningful data
changes.
) o Provides insight
Evaluates how Highly sensitive ) o
o ) Fraud into decision
variations in explanations may ) ] ]
) o detection, risk boundaries, but
o inputs affect lack reliability; )
Sensitivity _ assessment, excessive
explanations and unstable models S o
scientific sensitivity can
feature can degrade ) )
) ) N modeling. introduce
importance. interpretability. ] N
instability.
May not detect Online
Tracks whether _ _ Helps ensure long-
_ slow concept drift; learning )
explanations ) term trust in Al
Temporal ) requires careful systems, o
) remain stable over ) ) predictions, but
Consistency _ selection of adaptive Al, _
time and across ) ) o may hinder model
evaluation time-sensitive o
model updates. ) o flexibility.
timescales. decisions.

5. Cross-Cutting Challenges and Future Directions

5.1 Data Quality, Bias, and Ethical Concerns
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Data quality is fundamental to both the development and accurate assessment of interpretability
metrics in neural networks. When training data are skewed or incomplete, resulting models often
produce misleading explanations that fail to reflect their true decision-making process. A
particularly pressing issue arises when the datasets used for interpretability evaluation carry
inherent biases traced to historical inequalities, sampling errors, or flawed data collection
methodologies [38]. These biases can become embedded in a model’s logic, causing it to
systematically favor or disadvantage certain groups. When interpretability methods are
subsequently applied, they may unintentionally legitimize these imbalances by highlighting
features that stem from the biased data, thereby reinforcing existing inequities. In high-stakes
contexts such as healthcare or finance, this dynamic can lead to ethically questionable or even
discriminatory outcomes.

Addressing these concerns requires a holistic approach to data collection, preprocessing, and
validation, ensuring that the final dataset is both representative and free from systematic bias.
Fairness-aware interpretability measures also play an essential role by detecting and mitigating
bias at multiple levels, from training data to model outputs. Techniques such as counterfactual
explanations, adversarial testing, and fairness constraints can pinpoint where biased features
disproportionately shape decisions, making it easier to implement corrective measures that
enhance both interpretability and fairness [21]. As neural networks continue to expand their reach,
developing bias-aware interpretability metrics will be crucial for maintaining transparency, ethical
accountability, and alignment with societal values.

5.2 Scalability and Complex Architectures

As neural networks become increasingly intricate, it becomes far more challenging to apply
interpretability metrics that can reliably capture their decision-making processes. Convolutional
neural networks (CNNSs), designed to extract spatial hierarchies from large numbers of parameters,
introduce complexities that do not necessarily arise in simpler models. Likewise, recurrent neural
networks (RNNSs) and advanced variants such as long short-term memory networks (LSTMs) and
gated recurrent units (GRUs) add another layer of difficulty by incorporating temporal
dependencies. Methods that work well for basic feed-forward architectures may struggle when
tasked with explaining deeper or more specialized structures [16].

Ensuring that interpretability metrics remain scalable thus requires techniques capable of handling
high-dimensional feature spaces and the unique dependencies characterizing different network
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types. A metric tailored for CNNs, for instance, often focuses on spatial feature importance and
may not effectively reveal critical temporal patterns in RNN-based models. Conversely, methods
originally developed for fully connected networks might fail to account for the sequential nature
of time-series data. Attention-based explanations, layer-wise relevance propagation, and gradient-
based attribution methods represent some of the current strategies for extending interpretability to
deeper and more diverse architectures. However, generalizability remains a major concern, since
a metric validated on one dataset may yield inconsistent results when applied to new domains or
data distributions [5].

Future advances in interpretability will likely hinge on creating standardized frameworks that
adapt across various neural architectures while retaining consistency, reliability, and real-world
applicability. As these networks continue to expand in both scope and depth, robustly scalable
metrics will be indispensable for ensuring that high-performing models also maintain transparent,
interpretable decision-making processes.

5.3 Temporal Consistency: Challenges and Applications

A critical challenge in ensuring robust interpretability is that model explanations must remain
coherent and trustworthy even as the underlying models adapt to new data or changing conditions.
This notion of temporal consistency focuses on how explanations evolve over time and how the
logic behind predictions may shift due to retraining, online learning, or external factors [5].
Determining the appropriate time scale for evaluating these changes poses a fundamental dilemma:
models must be allowed to adapt naturally while still preserving stable, meaningful explanations
that stakeholders can trust. Temporal consistency metrics become especially important in dynamic
environments such as fraud detection or recommender systems, where user behavior and data
distributions can shift rapidly [22, 27]. In these contexts, models must be recalibrated to
incorporate fresh data without compromising their interpretability. As a result, temporal
consistency metrics must be calibrated to strike a balance between enabling essential model
updates and identifying any unintended or unstable changes that could undermine user confidence.
High-stakes applications in healthcare and finance further underscore the value of temporal
consistency. For instance, in clinical diagnostics, maintaining stable interpretations over a patient’s
care pathway is critical for clinician acceptance and safe patient outcomes [19, 49]. Likewise, in
financial risk assessment—where macroeconomic trends and market volatility can shift rapidly—

temporal consistency metrics help ensure that model outputs remain both transparent and reliable
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over extended periods [6, 14]. By integrating temporal consistency assessments into broader
interpretability frameworks, practitioners can track how a model’s decision rationale progresses as
conditions evolve. This longitudinal perspective not only detects when a model might begin
relying on spurious correlations or experiencing concept drift but also ensures that explanations
continue to be trustworthy and actionable, even in the face of ongoing changes in data and domain
requirements.

5.4 Towards Inherently Interpretable Networks

Embedding interpretability metrics into the model development lifecycle is increasingly viewed
as essential for ensuring that neural networks are transparent from the outset, rather than treating
interpretability as a post hoc concern. Traditional workflows often emphasize accuracy at the
expense of transparency, leading to highly complex models that excel at predictive performance
yet are difficult to understand [45]. In response, recent research has shifted toward designing
inherently interpretable models, where explainability is treated as a core design criterion. This
approach includes integrating interpretability metrics directly into the training process so that
networks can optimize both predictive accuracy and transparency simultaneously [35, 51, 52].

A variety of strategies facilitate this goal. Limiting model complexity or imposing constraints on
feature usage ensures that models do not grow unnecessarily large or obscure. Intrinsically
interpretable architectures such as decision trees, rule-based models, and linear models provide
built-in transparency, while still achieving strong performance in many domains. Additionally,
regularization methods—ranging from sparsity-inducing penalties to attention mechanisms and
disentangled representations—can further enhance interpretability by constraining parameter
space. Models that generate human-readable explanations alongside predictions, such as self-
explaining neural networks (SENN) and certain attention-based designs, represent another
promising avenue for striking a balance between accuracy and understandability [4].

By weaving interpretability into every stage of model design and development, researchers and
practitioners can create Al systems that are not only robust and accurate but also inherently
trustworthy. This integrated perspective is especially critical in domains like healthcare, finance,
and legal decision-making, where interpretability is fundamental to regulatory compliance,
fairness, and user acceptance. Moving forward, adopting inherently interpretable architectures and
training processes will be a key step toward building Al systems that align more seamlessly with

ethical standards and human decision-making needs.
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5.5 Emerging Paradigms

The field of neural network interpretability is expanding to address the limitations of existing
approaches, prompting the development of new and innovative metrics. One notable advancement
involves causal interpretability measures, which move beyond simple correlations to uncover the
direct causal effects of individual features on model outputs [7]. By evaluating whether altering a
specific feature truly changes a model’s prediction, these metrics offer deeper insights into the
underlying decision-making process. They are especially critical in applications such as healthcare
or finance, where understanding cause-and-effect relationships helps ensure fairness,
accountability, and compliance with ethical or legal standards.

Another promising direction focuses on dynamic interpretability metrics that adapt to various
stages of model training and deployment [23]. Whereas many current methods provide static
explanations once a model is fully trained, these newer approaches integrate interpretability
assessment throughout the entire lifecycle. Developers can then receive real-time feedback on
shifts in feature importance, architecture changes, and emerging patterns in the decision process.
Such continuous monitoring proves particularly valuable in iterative or online learning scenarios,
where models are frequently retrained or refined. By keeping interpretability in sync with evolving
model parameters, stakeholders can maintain consistent levels of transparency and ensure that the
explanations remain relevant over time.

Additionally, interactive interpretability metrics have begun to emerge, offering users the ability
to engage with a model’s explanations and provide feedback that adjusts them in real time [48].
This approach accommodates the fact that different user groups—ranging from regulators and
domain experts to everyday end users—may require different levels of detail or specific
perspectives on model behavior. By incorporating user feedback into interpretability, Al systems
can generate context-sensitive explanations that better align with individual decision needs and
expertise levels. These developments collectively signal a future where interpretability is not only
more granular and accurate, but also more responsive and human-centric, opening the door to Al
systems that are transparent, adaptable, and ethically responsible in their decision-making
processes.

6. Conclusion

Quantitative metrics play a pivotal role in evaluating the interpretability of neural networks, which

have become integral to high-stakes domains such as finance, healthcare, and autonomous systems.
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This paper has reviewed a range of these metrics—fidelity, complexity, stability, and sensitivity—
each providing distinct insights into how well explanations align with a model’s underlying logic,
how easily they can be understood, and how resilient they remain under different conditions.
Despite substantial progress in developing such metrics, several critical challenges persist. Data
quality, bias, and scalability remain significant obstacles, as interpretability approaches validated
on simpler or cleaner datasets may not generalize effectively to more complex real-world settings.
Moreover, a common practice of treating interpretability as an afterthought rather than integrating
it into the model development process has limited the impact of current methods. Emerging
directions—including causal interpretability and interactive metrics—show promise for bridging
the gap between technical explanations and genuine human understanding. Yet fully transparent
and trustworthy Al systems remain an aspirational goal. The tension between maximizing model
performance and ensuring clarity, along with the need for metrics that can adapt to evolving
architectures, underscores the importance of ongoing research. Overcoming these challenges is
crucial for building Al models that are not only accurate but also explainable, ethical, and
compliant with regulatory standards. By continuing to refine interpretability metrics and
embedding them throughout the Al lifecycle, researchers and practitioners can bolster trust in Al-
driven systems and ensure that neural networks operate in ways that are transparent, accountable,
and aligned with societal values.
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