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ARTICLE INFO ABSTRACT

Received: 2024/09/15 The growth of Internet of Things (10T) devices in the healthcare sector has
Revised: 2024/10/09 enabled 'the new era of the Interne'F of Medical Th_mgs (IoMT). However,

0T devices are vulnerable to various cybersecurity attacks and threats,
Accept: 2024/10/19 leading to negative consequences. Cyberattacks can harm IoMT devices in
Keywords: use and risk human lives. Given the promising potential of Artificial

Intelligence (Al)-related technologies to enhance specific cybersecurity
Internet of Things measures, this article provides a comp_rehensive rev_iew of this emerging
Medical, Deep Leérning, field _to mtrodl_Jce modern cybersecurity technologies that Ieverag_e Al
Machine Learning. techniques to improve performance and address security and privacy
vulnerabilities. Our findings indicate that integrating Machine Learning
(ML) and Deep Learning (DL) techniques enhances cybersecurity measures'
performance, speed, reliability, and efficiency. This issue could be useful in
improving the security and privacy of IoMT devices. This article outlines
the numerous advantages of Al technologies compared to traditional
cybersecurity technologies, such as blockchain, anomaly detection,
homomaorphic encryption, differential privacy, and federated learning. We
conclude with considerations for future research, emphasizing the
promising Potential of Al-based cybersecurity in the IoMT landscape,
particularly in protecting patient data and data-driven healthcare.

Artificial Intelligence,

1. Introduction

The term "Internet of Things" (loT) was introduced by British entrepreneur Kevin Ashton [1].
He described a world where all inanimate objects have a digital identity and can be managed and
controlled through computers. All people are connected through the Internet, but according to

the title, things are connected in the Internet of Things. 10T, a concept of interconnected sensors
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called "things,” originates from the Internet Protocol (IP). The Internet of Things refers to the
integration of physical objects equipped with sensors and actuators that can communicate with
computer systems through wired or wireless networks [2]. The rapid advancement in loT
technology plays a crucial role in the healthcare sector, making the Internet of Medical Things
(IoMT) increasingly common. Additionally, developing high-speed network systems and the
growing use of portable monitors, smartphones, wearable devices, and electronic health records
in healthcare contribute to the significant growth of 10T devices in the healthcare sector [3].
Integrating 10T devices into healthcare systems enhances connectivity and system
interoperability, enabling collaboration between isolated systems in the healthcare domain [4-6].
However, 10T devices are vulnerable to various security threats and attacks, as they lack self-
protection capabilities.

Recent research has shown that over 90% of 10T devices transmit data insecurely, with 57%
vulnerable to attacks that could leak sensitive data. Cyberattacks not only target loMT devices
but also pose a threat to human lives [7].

IoMT, regarded as a collection of medical devices and related software applications, has
emerged as a specific aspect of 10T, focusing on the integration and interoperability of medical
devices. This makes it a powerful tool in the healthcare sector. Additionally, it provides
unparalleled opportunities for collecting, analyzing, and exchanging biomedical data,
revolutionizing the delivery of healthcare services [8].

One of the most critical debates in the IoMT field involves a trade-off between patient privacy,
device usability, and data accessibility. Maintaining patient confidentiality while using patient
data for therapeutic and research purposes remains a major challenge [9]. Additionally, security
levels may vary depending on the manufacturer of the IoMT device, which often leads to
vulnerabilities within the healthcare ecosystem.

Despite the numerous benefits IoMT offers in daily healthcare, such as effective patient
monitoring and improved decision-making, it has also raised several security concerns. Notably,
cybersecurity breaches have significantly impacted the global healthcare industry. In 2023, at
least 2,620 organizations were affected, leading to the theft of 77.2 million records, with 78.1%
of the affected entities based in the United States [10]. These breaches, primarily attributed to
hacking and ransomware attacks, accounted for 88.52% of incidents and 99.94% of the
compromised records [11]. According to IBM's 2023 Cost of a Data Breach Report, the
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healthcare sector consistently incurs the highest costs related to data breaches compared to other
industries, rising from $10.1 million in 2022 to $10.9 million in 2023 [12].

The structure of this review article is as follows. In Section 2, we present some previous studies
in the field of cybersecurity. Section 3 introduces networked medical devices. In Section 4, we
discuss the security and privacy of IoMT devices. Section 5 highlights the role of artificial
intelligence technologies in enhancing I0MT security. Before concluding in Section 7, we
address future research challenges in Section 6.

2. Literature review

Recent scientific reviews on this topic have highlighted the security and privacy features, threat
models, requirements, and major challenges affecting the security of loMT devices [8, 9, 13, 14].
Specifically, in [15], the authors present recent contributions focusing on implementing formal
methods to improve the security of loMT ecosystems. A recent review on security threats and
associated countermeasures in loMT also focuses on developing advanced security
countermeasures, considering the primary security objectives [16]. Recently, the authors of [17]
proposed an innovative classification for intrusion detection schemes tailored to IoMT. In
contrast to the reviews above, some cybersecurity technologies, especially in the context of
Networked Medical Devices (NMDs), seem to benefit from the increasing potential of Artificial
Intelligence (Al) [18].

Al, through its ability to analyze large amounts of data and detect abnormal patterns, enhances
patient data's integrity, confidentiality, and availability. Additionally, Al-based threat detection
can be useful in identifying emerging threats and vulnerabilities, thereby improving the security
of modern healthcare systems [17]. In this context, specific reviews discuss several privacy and
security challenges in healthcare systems and present various privacy-preserving techniques in
DL and ML for secure data mining and processing [19, 20].

Explainable Artificial Intelligence (XAI) refers to a set of methods and techniques to increase the
transparency and interpretability of decisions made by Al models. Understanding how the model
operates and makes decisions in traditional Al systems can be challenging, especially in complex
models like deep neural networks. XAl seeks to transform this "black box" into a more
interpretable system, enabling users to understand and trust Al decisions. XAl methods include

the following:
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1. Model-Specific Methods: These methods are designed for specific models and include
inherently transparent and interpretable algorithms. For example:

o Decision Trees: These models create a hierarchy of decisions that can easily
explain how each decision was made.

o Linear Models: Because these models use specific weights for each feature, it is
straightforward to understand the impact of each feature on the decisions.

2. Model-Agnostic Methods: These methods can be applied to any Al model and typically
assist in explaining complex models such as deep neural networks. Some of these
methods include:

o LIME (Local Interpretable Model-agnostic Explanations): This method
examines the decisions of a model in small, local areas of the data space and
provides simple explanations for those decisions.

o SHAP (Shapley Additive Explanations): This method is based on game theory
and explains how much each input feature contributes to the model's output.

o Saliency Maps: For computer vision models (such as CNNs), these maps
highlight the key areas of images that have had the most significant impact on the
decisions.

3. Sensitivity Analysis: This method investigates how changes in inputs lead to changes in
model outputs, helping users understand which features significantly influence the final
decision.

Importance of XAl

» Reliability: Transparency in decision-making increases users' trust in Al systems.

* Privacy and Fairness: Explaining models can uncover and correct hidden biases, preventing
unfair decisions.

« Regulatory Compliance: In some instances, such as data protection laws, it is necessary to
explain the reasoning behind decisions made by Al systems to individuals.

Similarly, the authors [21] focus on the use of Al as a cybersecurity tool in the healthcare sector,
while the authors [22] discuss the security aspects of Federated Learning (FL) in loMT
applications within smart healthcare ecosystems. Enhancing cybersecurity performance through
Al involves using advanced technologies to improve threat detection, response time, adaptability

to evolving threats, and the overall robustness of security measures. Integrating Al is crucial
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when addressing challenges from a complex threat landscape, enabling effective cybersecurity
operations.

The primary aim of this review is to fill the gap in the relevant literature concerning modern
cybersecurity technologies that utilize Al techniques to enhance performance and mitigate
security and privacy vulnerabilities. Considering the numerous advantages of Al technologies
compared to their traditional cybersecurity counterparts—including blockchain, anomaly
detection, homomorphic encryption, differential privacy, federated learning, and more—we
provide a structured overview of current scientific trends.

3. Networked Medical Devices

In the distinct realm of 1o0MT, Networked Medical Devices (NMDs) encompass a wide range of

interconnected devices via the Internet and wireless communication channels. These include
Implantable Medical Devices (IMDs), Wearable Medical Devices (WMDs), Remote Patient

Monitoring (RPM) systems, and Hospital Network Devices (HNDs).
Al
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Figure 1: Internet of Things ecosystem
The emerging IoMT ecosystem and its corresponding NMDs are illustrated in Figure 1, where a

network of hospitals can exchange medical data for clinical and research purposes. This enables
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physicians and researchers to benefit from medical information obtained from a more significant
number of patients.
The Internet of Things ecosystem is diverse and includes various components, and its
development is impossible without identification and communication between the components.
The loT ecosystem is based on different layers: hardware, communication, security, platforms,
information storage, processing, and software.
3.1. Implantable Medical Devices (IMDs):
IMDs are surgically placed within a patient's body for several purposes: (1) to address specific
medical conditions by replacing or augmenting the function of a damaged organ or anatomical
structure, (2) to monitor various bodily functions, and (3) to deliver medications or other
therapies directly to a targeted area. IMDs can be classified into the following categories [23]:

« Cardiovascular Devices: Used to treat heart and vascular-related diseases.

e Neurological Devices: Used for treating conditions related to the nervous system,

including epilepsy, Parkinson's disease, and chronic pain.

o Orthopedic Devices: Used to treat conditions related to bones and joints.

e Cochlear Devices: Used for the treatment of hearing loss.

e Implantable Drug Delivery Devices: These devices deliver medications directly to

targeted areas of the body, such as tumors, through implantable pumps.

IMDs are typically made from biocompatible materials and are often powered by batteries or
other energy sources. It is important to note that patients who are candidates for IMDs must be
closely monitored to ensure the device's proper function and to address potential issues, such as
device rejection or malfunction [24]. Although IMDs have significantly improved healthcare and
brought revolutionary advancements in saving lives, they also present notable security
challenges.
3.2. Wearable Medical Equipment (WMDs):
WNMDs are a rapidly growing category of healthcare technology that can be worn on the body to
monitor, track, or detect various health parameters. They often utilize advanced sensors and
wireless connectivity to collect and transmit data. In addition, WMDs offer several benefits,
including real-time health monitoring, increased patient engagement, and improved healthcare
outcomes. They have been utilized in research and clinical trials to collect objective data, track
patient progress, and evaluate treatment effectiveness. Among WMDs, fitness trackers are the
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most popular due to their ability to monitor activity levels, heart rate, sleep patterns, and calories
burned. Continuous glucose monitors are devices designed to track glucose levels in individuals
with diabetes, providing real-time data to manage blood sugar levels and facilitate informed
treatment decisions [25].

By continuously tracking vital signs and identifying irregularities or patterns, WMDs have the
potential to facilitate early detection of potential health issues, enabling timely medical
interventions. However, WMDs may also pose significant security concerns. The sensitive health
data they generate inherently raises privacy and confidentiality issues, necessitating robust
encryption and secure data storage.

3.3. Remote Patient Monitoring Systems (RPMs):

RPM systems monitor patients and collect relevant medical data remotely. They utilize multiple
sensors to transmit data from the patient to healthcare professionals, enabling continuous
monitoring and timely intervention. It is noteworthy that RPM systems provide patients access to
secure online portals or mobile applications to view their health data, track their progress, receive
educational materials, and communicate with healthcare providers remotely [26].

RPMs are based on wireless technologies such as Bluetooth, Wi-Fi, and cellular networks, while
the transmitted data is typically encrypted to protect privacy and confidentiality. Additionally,
the transferred patient data is stored and analyzed using specialized software [27]. Consequently,
complex algorithms are employed to process the data, identify potential anomalies, and send
alerts to medical staff if necessary, thereby preventing data leaks and enhancing patient safety.
3.4. Hospital Network Devices (HNDs):

HNDs consist of devices and tools medical professionals use in hospitals and other clinical
settings for diagnosing, treating, and monitoring patients. Like IMDs and WMDs, HNDs can
vary significantly based on patient needs and the conditions being treated.

Common HNDs include:

« Diagnostic and Imaging Equipment: Such as X-ray machines, computed tomography
(CT) scanners, magnetic resonance imaging (MRI) machines, and ultrasound scanners, as
well as laboratory equipment for analyzing blood, urine, and other bodily fluids.

e Monitoring Devices: For example, blood pressure monitors, ECG machines, and pulse

oximeters.
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e Infusion Pumps: Used to deliver medications, fluids, and other substances directly into a
patient’s bloodstream.
« Rehabilitation Equipment: Including physical therapy devices, exercise equipment,
splints, braces, and more.
o Patient Positioning Equipment: Hospital beds and stretchers are used to position
patients for various medical procedures and to ensure comfort during their hospital stay.
Ensuring medical equipment security in hospitals is critically important in the modern healthcare
environment, which is becoming increasingly interconnected. As more medical devices join
hospital networks, the exposure to cyberattacks rises, making them vulnerable to cybercriminals
seeking to exploit software or hardware weaknesses. Malicious attacks on medical equipment in
hospitals can have serious consequences, such as compromising patient safety and privacy and
disrupting hospital operations.
4. Security and Privacy of loMT devices
Although IoMT devices offer numerous benefits, they also present challenges due to their
vulnerability to security threats and attacks. It is essential to identify such threats and attacks to
ensure the integrity, availability, confidentiality, and privacy of sensitive patient health data.
The interconnected nature of IoMT devices can expose them to various cyber risks, including
unauthorized access, data breaches, and potential manipulation of device functionalities. As these
devices collect and transmit sensitive health information, any compromise can lead to severe
consequences, including breaches of patient confidentiality, disruptions in healthcare delivery,
and even risks to patient safety.
To address these challenges, it is crucial to implement robust security measures that encompass
encryption, secure communication protocols, access control mechanisms, and regular security
assessments. Additionally, healthcare providers must foster a culture of security awareness
among staff and patients to effectively mitigate risks associated with loMT devices.
4.1. Security and Privacy Threats
As modern medical devices have evolved from standalone sensors to more integrated devices,
their security is broadly understood through a layered approach that connects various
technologies, devices, sensors, and systems via electrical, electronic, and wired or wireless

connections. The structure and functionality of each layer are described in Figure 2.
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Figure 2: IoMT network layers
« Perception Layer - Sensor systems for Data Collection
The perception layer, often called the physical layer, is the lowest layer of the loMT ecosystem.
It comprises data sources such as smart objects, health monitoring devices, and mobile
applications integrated with sensors like infrared, medical, smart device, cameras, and Global
Positioning Systems (GPS). These sensor systems detect environmental changes, identify
objects, locations, and measurements, and convert information into digital signals. They can also
store data for future use.
In the perception layer, unauthorized physical access to medical devices can pose significant
security risks. Additionally, malicious actors may attempt to manipulate medical devices by
physically altering their components or configurations.
This can include accessing the internal components of a device, manipulating hardware or the
operating system, or inserting malicious components. Threats at the physical layer may also
manifest as intentional or unintentional interference with the operation of medical devices caused
by electromagnetic interference, power outages, or intentional jamming of wireless signals. From
a network layer perspective, Networked Medical Devices (NMDs) must be secure to protect
patient data and ensure device functionality. Spoofing, Distributed Denial of Service (DDoS)
attacks, Sybil attacks, and sinkhole attacks are the primary types of threats typically identified at
this layer [28].
* Network layer - Gateway layer
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As mentioned, sensors require a connection to a gateway that facilitates communication through
networks, storing information either locally or centrally. Communications can occur at various
frequencies and be short-range, such as RFID, wireless sensor networks, Bluetooth, Zigbee, and
low-power Wi-Fi, or longer-range, such as cloud computing and blockchain.

Networks can include Personal Area Networks (PAN) like Zigbee, Bluetooth, and Ultra
Wideband (UWB), or Local Area Networks (LAN) such as Ethernet and Wi-Fi connections.
Wide area networks (WANSs) like Global System for Mobile Communications (GSM) do not
require direct connectivity but utilize servers and backup applications. Wireless Sensor Networks
(WSN) are particularly useful for supporting many sensor nodes, especially in sensors that
require low power connectivity and data rates.

* Transfer Layer - Data Storage

The transport layer plays a crucial role in the communications of the loMT network. It receives
data from applications and segments it for transmission into smaller packets, ensuring data
integrity and reliability by detecting and correcting errors. The transport layer also manages the
flow of data to prevent network congestion and allows multiple applications to share the same
network connection [5]. This layer provides two main protocols: the Transmission Control
Protocol (TCP), which prioritizes reliability, and the User Datagram Protocol (UDP), which
enhances speed for real-time applications. It is important to note that the transport layer enables
smooth and efficient data transfer between IoMT devices.

 Application Layer

The application layer plays a crucial role in data processing, user interaction, and device
functionality for NMDs. The primary function of this layer is to interpret data and provide
specific application services. It utilizes Al and deep learning to understand electronic health
record data and monitor trends and changes in the collected data (data repository). However, this
layer is susceptible to various security threats that can compromise patient data, device integrity,
and system accessibility.

4.2. Active and passive attacks

The security and privacy threats outlined in the previous section are closely related to passive
and active attacks on NMDs. Passive attacks, such as eavesdropping, are employed by potential
attackers to gain unauthorized access to sensitive data, such as patient health records and
treatment plans exchanged between NMDs [29]. Attackers may passively intercept
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communications to obtain valuable information, jeopardizing the patient's right to privacy and
confidentiality. Furthermore, through passive attacks, attackers often intercept and alter
transmitted data, leading to misdiagnoses, incorrect medication dosages, or other adverse
consequences.

Active attacks, such as injection attacks (SQL injection, code injection, and others), exploit
vulnerabilities in NMD application software to inject malicious code. This can lead to
unauthorized access, data corruption, and system compromise. Active attacks include denial-of-
service (DoS) attacks, where attackers overwhelm NMDs with large volumes of malicious traffic
or requests. As a result, devices may become unavailable, disrupting vital medical services. In
this context, active malware attacks threaten the operation of networked medical devices and can
facilitate unauthorized access or control. Malware may be introduced through various means,
including infected software updates and compromised network connections [30]. A detailed
classification of attacks against NMDs is provided in the following paragraphs.

4.2.1. Malware Attacks

The term "malware" generally refers to malicious software that can infect medical devices and
compromise their security and functionality. Malware may jeopardize sensitive data, manipulate
device behavior, or potentially cause physical harm to patients.

Ransomware is a relatively popular malware attack that can encrypt the data on a medical device
and render it inoperable until a ransom is paid. Ransomware attacks on medical devices can lead
to significant disruptions in patient care and may compromise the confidentiality and integrity of
sensitive medical data [16]. Additionally, Trojan horses are malicious programs that appear to be
legitimate software but typically contain hidden malware that can jeopardize the security of a
medical device. Trojan attacks can steal sensitive data or gain unauthorized access [31]. Botnets
are networks of infected devices that an attacker can control. Botnets can launch DDoS attacks,
steal sensitive data, or utilize the medical device as a proxy for other attacks. Another type of
malware attack involves backdoors, vulnerabilities intentionally embedded in middleware or
device software, allowing unauthorized access to the device.

4.2.2. Sybil Attacks

Syhbil attacks are a security threat when an attacker creates multiple fake identities, referred to as

"Sybil nodes,"” to infiltrate a network and gain access to sensitive information. In the context of
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IoMT, Sybil attacks can be particularly challenging as they may compromise the connected
devices and the data they collect.

Popular defensive strategies against Sybil attacks include social graph-based Sybil detection,
behavior classification-based Sybil detection, and mobile Sybil detection. By implementing
authentication mechanisms, reputation-based systems, distributed consensus algorithms, secure
routing protocols, and machine learning-based techniques, healthcare organizations can mitigate
the risk of Sybil attacks and ensure the security of their 10T networks.

Identity-based Sybil attacks are specific types of Sybil attacks in which the attacker creates
multiple fake identities based on the same physical identity, making it difficult to identify and
localize the attack [32].

4.2.3. Routing Attacks

Routing attacks threaten the confidentiality, integrity, and availability of sensitive medical data,
potentially endangering patient health. One type of routing attack, a Man-in-the-Middle (MitM)
attack, involves intercepting and modifying the communication between a medical device and its
intended destination. This allows the attacker to steal or alter sensitive medical data.
Additionally, routing table attacks may attempt to manipulate a medical device's routing table,
causing it to send data to an unintended destination or preventing it from communicating with
other devices on the network [33]. Denial-of-Service (DoS) attacks aim to disrupt the normal
functioning of a medical device by overwhelming its routing infrastructure with traffic, rendering
it unresponsive or even shutting it down.

An attacker may also exploit vulnerabilities in the routing protocol used by a medical device to
gain unauthorized access, steal sensitive data, or manipulate its behavior. DoS attacks have been
extensively studied in the literature. Variants of DoS attacks include battery depletion, botnets,
and several others. Flooding is recognized as a type of DoS attack that leads to resource blockage
and overload in the healthcare environment. Different types of DoS attacks can be categorized
based on their target network layer.

4.2.4. Battery Drain Attacks

Attacks on implantable and wearable devices maliciously aim to drain the battery of these
devices, potentially harming patients who rely on them for monitoring or treatment. Closely
related to other attacks, battery drain can occur due to malware infecting a device, causing it to

CONsume excessive energy.
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DDoS attacks may also overload the communication channels of implantable devices, forcing
them to expend more energy to maintain connectivity. An attacker could physically manipulate a
wearable or implantable device to reduce energy-saving features or increase power consumption.
Regular software updates can typically help address security vulnerabilities in these devices.
Proper encryption can protect wearables or implantables from malware attacks that lead to faster
battery drainage. At the same time, access control measures, such as multi-factor authentication,
can prevent unauthorized access and manipulation of implantable devices [34, 35].

4.2.5. Firmware modification

Firmware is the software used to control the hardware of a device. Due to its inherent software
nature, this operating system is vulnerable to various digital attacks. An attacker can exploit such
vulnerabilities to gain access to the operating system's core [36].

Specifically, an attacker may access, modify components, or entirely replace the software to steal
information, corrupt data, recreate routing rules, create a launchpad for further attacks, etc.
Operating system attacks in loMT are quite common and generally include the following:

(a) Unauthorized Access: The attacker gains access to the device and sensitive personal data
and information.

(b) Device Control: The attacker takes partial or full control of the device.

(c) Malware Installation: The attacker installs malware alongside the software, which can be
transferred to other devices or used as a starting point for further attacks.

(d) DDoS Attacks: Changes to the device's operating system turn it into a bot that supports
potential DDoS attacks on the network.

(e) Data Loss: Operating system attacks can lead to the loss or corruption of data/information
stored on the device.

(F) Physical Damage: Since the operating system controls the hardware, tampering with it can
physically damage the device or specific components. Attackers can also reverse-engineer the
operating system of a medical device to find vulnerabilities or modify the system to suit their
needs. Additionally, they can exploit vulnerabilities during the update process of a medical
device to install unauthorized operating system updates that change the device's behavior or even

introduce new vulnerabilities [37].
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4.2.6. Eavesdropping

Eavesdropping occurs when a hacker intercepts, deletes, or modifies data transmitted between
two devices. This type of attack is also known as a spying attack. Eavesdropping relies on
insecure network communications to access data in transit between devices. Through
eavesdropping attacks, sensitive information is obtained due to insecure communication
channels.

Several medical and wearable devices, such as blood pressure monitors and smartwatches, have
vulnerabilities that allow attackers to obtain sensitive information. To further explain the
definition of "eavesdropping attack," it usually occurs when a user connects to a network where
traffic is not secure or encrypted and sends sensitive data to a colleague. Data is transmitted over
an open network, allowing the attacker to exploit and intercept a vulnerability through various
methods.

Detecting eavesdropping attacks is often difficult. Unlike other forms of cyber attacks, a bug or
eavesdropping device may not negatively impact the performance of devices and networks. With
eavesdropping, attackers can employ various methods to carry out attacks, typically involving

using different devices to listen to conversations and monitor network activities [38].

4.2.7. Cloud attacks, Device Simulation, and Sensor Spoofing

Cloud attacks target cloud-based service platforms, such as computing services, storage services,
or hosted applications. Cloud computing is a computational model where computing resources
(like servers, storage, and data processing) are provided over the Internet from centralized data
centers. Users can access these resources via the Internet without needing physical hardware.
Key features of cloud computing include scalability, remote accessibility, and reduced
infrastructure costs.

Features of Cloud Computing:

* Data processing and storage in centralized data centers.

« Suitable for applications that require heavy processing.

» Dependent on an internet connection with a relatively longer delay.

» Suitable for processing massive data and performing complex calculations.

Cloud attacks can have severe consequences, including data breaches, data loss, unauthorized

access to sensitive information, and service disruptions. As more organizations and individuals
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rely on cloud computing for data storage and processing, the number of potential targets for
attackers also increases. Many organizations may be unaware of the risks and vulnerabilities
associated with cloud computing or may not have adequate measures to protect against these
threats.

Cloud attacks include modifying cloud infrastructure, a technology that has been relatively
recently integrated into healthcare. Device simulation involves mimicking devices to perform
malicious activities within the IoMT environment. If a successful attack occurs, the attacker
gains control of a sensor and alters the medical device's functionality, potentially jeopardizing
patient safety and data integrity [39].

4.2.8. Perception Attacks

Perception attacks are associated with vulnerabilities at the lowest level of the transmitted signal,
regardless of the medium used. Perception attacks often manifest as multiple access (MAC) layer
attacks.

At the perception layer, attackers may manipulate the data generated by medical devices or
sensors, making vital signs appear stable when they are not. This can lead healthcare providers to
make incorrect decisions based on false information, potentially endangering patients' lives.
4.2.9. Bluetooth Attacks

Bluetooth attacks can be classified into several categories, mainly because Bluetooth technology
implements its layered architecture. Several attacks of this particular type include blue smacking
(DoS), Blues nerfing and Bluebugging (data breach), Bluejacking (spoofing), and Blueprinting
(sniffing).

Bluejacking is an attack in which Bluetooth sends unsolicited messages to a medical device.
Messages can steal sensitive data or cause unpredictable device behavior [40].

Bluesnarfing exploits vulnerabilities in the Bluetooth protocol to gain unauthorized access to a
medical device. Once an attacker gains access, they can steal sensitive data or manipulate the
behavior of that device. Users of medical programs are often required to log into an online
account, where they enter their medical information provided by WMD or IMD. The relevant
information has been collected and stored. If malicious agents gain access to these credentials,
they can alter or manipulate medical data in various ways, posing a significant risk to patient

health monitoring [41].
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Due to numerous security attacks on NMD, From passive attacks, such as eavesdropping, to
active attacks, such as malware infiltration, it is clear that protecting these devices' integrity,
confidentiality, and availability is paramount. These attacks are a significant risk to patient
privacy and the effectiveness of medical treatments. By examining these vulnerabilities and their
implications, it is clear that advanced technologies must be developed to enhance NMD
defenses. Are used. With its ability to analyze large amounts of data, the ML algorithm can
detect anomalies and predict possible security breaches. In the next section, we will examine the
application of Al techniques in IoMT cyber security. We strive to ensure optimal performance
and reliability while mitigating multiple threats and attacks.

5. Artificial intelligence to increase IloMT security

Increasing exposure to NMD against security threats and attacks, as described in Section 4,
highlights the necessity of improving the performance and effectiveness of cyber security. To
address this growing concern, this section presents the central role of ML and DL methods in
increasing the security of IoMT devices. We will check. Al effectively contributes to the most
advanced cybersecurity technologies, from anomaly detection and intrusion detection systems to
homomorphic encryption, and can reduce risks, increase patient safety, and protect sensitive
medical data. We aim to provide a comprehensive review of the use of ML technologies and DL
To create secure and sustainable IoMT ecosystems.

5.1. Blockchain

Blockchain (BC) comprises a series of modules that store data. Modifying data becomes
exceptionally challenging once data is added to a block, making blockchain an extremely secure
information network. In a blockchain network, interactions between nodes occur through
transactions, which are subsequently collected into information blocks after being verified by
designated network nodes. The recorded data blocks are secured against tampering using a
consensus mechanism, enabling decentralized usage. Interactions with other devices or peers do
not require central authentication, allowing healthcare applications to exchange patient
healthcare data securely.

In this context, BC-based methods to mitigate DDoS attacks can be classified based on their
deployment locations as network-based, near the attacker, near the victim, or a combination,
emphasizing 1oT and SDN architectures [42].

The structure of a block consists of three components:
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« Data: Sender, receiver, and transaction amount.

o Hash: This is a unique code for each block, akin to a fingerprint.

e Previous Block Hash: Each block is linked to the others, creating a chain.
Therefore, a minor change in one block can profoundly affect the entire blockchain. An
additional security layer has been implemented to reduce the risk of unauthorized access by
hackers.
A significant challenge to integrating BC into lIoMT arises from the limited computational
resources of NMDs, as BC typically does not operate in real time. However, it has been shown
that BC can enhance healthcare [43]. Combining artificial intelligence with BC technology in the
context of NMDs improves security by providing real-time threat detection, adaptive security
measures, and data protection. Nevertheless, it is essential to consider computational
requirements, data privacy concerns, and the need for continuous model updates when
implementing Al models for security in healthcare environments.
In [44], a three-layer neural network (TNN) and BC technology were combined into a single
framework that ensures the integrity and privacy of transmitted medical data. Additionally, [45]
introduced an integrated approach using a bidirectional long short-term memory (LSTM) model
and BC technology to provide early stress detection for NMD users. A new secure authentication
approach utilizing K-Nearest Neighbors (KNN) and ML has also been proposed, improving
computation time compared to traditional KNN algorithms [46].
5.2. Authentication Schemes
In healthcare systems, authentication and authorization mechanisms are critical security
components [47]. Upon successful authentication, an entity is granted access to the healthcare
system by verifying unique attributes or confidential information. Given the necessity for privacy
in healthcare systems, IoMT must encrypt patient data using a secure encryption Kkey.
Distributing a secure key, especially in symmetric encryption environments involving numerous
participants, is daunting. In asymmetric encryption, the key distribution challenge is resolved
using a pair of keys—one public and one private—although these keys are generally larger.
ML enables the development of adaptive authentication systems that continuously evaluate user
behavior and adjust authentication requirements accordingly. For example, a system can detect
changes in typing behavior or login location for healthcare providers and initiate additional
authentication if necessary. This could facilitate biometric authentication methods in medical
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devices, such as fingerprint, facial, or voice recognition [48]. These biometric factors are unique
to individuals and provide a higher security level than traditional authentication methods.
Decentralized authentication for patient-authorized wearable devices is facilitated using ML
techniques to predict and transmit authentication features to the next trusted reference. In [49,
50], a multi-layer security authentication scheme is proposed, encompassing data, network, and
application layers. Feature extraction at the application layer involves using a QRS set from ECG
signals, applying Legendre approximation, and a custom multi-layer perceptron for classifying
ECG data. Conversely, [51] discusses a lightweight hybrid authentication scheme incorporating
Supervised ML (SML) followed by an encryption and decryption scheme for secure data
transmission through wireless communication channels. SML facilitates decentralized
authentication for patient-authorized wearable devices to minimize computational costs,
authentication time, and communication expenses, particularly during data transfer between
different data collection areas.

A privacy-preserving deep learning neural network framework, as described in [52], is
implemented to safeguard data transmission against adversarial attacks while reducing
encryption/decryption times. A new privacy-preserving method based on a ciphertext policy has
been introduced, integrating the advantages of private, public, and master keys to create patient-
centric access control. In study [53], the authors propose a privacy-preserving scheme for
collecting patient data from IoMT devices in disease prediction systems. Following the initial
authentication phase, elliptic curve cryptography based on log-of-round values is applied to
enhance security during data transmission. A deep learning neural network utilizing an advanced
genetic swarm algorithm is employed for disease prediction. Lastly, [47]presents research on
delivering reliable ECG data by applying domain customization attacks within a supervised
learning platform. After receiving data from devices, a combination of unique features is
considered as input in a support vector machine (SVM) with various data preprocessing
techniques to refine the platform’s verification process.

5.3. Anomaly Detection (AD)

Anomaly detection algorithms are crucial in intrusion detection systems, monitoring and
identifying attacks or unusual activities within IloMT devices. These algorithms operate on the
premise of detecting anomalies, defined as extraordinary events that significantly deviate from
the normal behavior of a system. The complexity of anomaly detection in loMT arises from the
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diversity and multitude of interconnected devices and sensors, each with varying computational
resources, communication protocols, and capabilities.

Integrating ML and DL algorithms is proposed as a promising strategy to mitigate these
complexities. In [54], the authors introduce a biometric security framework based on ML that
utilizes features from ECG signals to authenticate users during the testing phase. This approach
leverages unique biometric identifiers derived from polynomial coefficient approximations.

5.4. Homomorphic Encryption (HE)

Homomorphic encryption (HE) refers to a set of cryptographic techniques that allow for
computations on encrypted data without decryption. This capability ensures that the results of
computations remain encrypted, facilitating data processing without compromising the
associated privacy. HE's ability to preserve privacy in outsourced storage and computation is
particularly noteworthy, as it allows data to remain encrypted even when processed in cloud
environments.

Recent studies indicate that the effectiveness of HE in loMT is enhanced through the integration
of MLand DL techniques. For instance, a design for efficient privacy-preserving text search in
cloud-based IoMT systems, utilizing HE and bilinear mapping, was proposed in [55]. This
design aims to establish a relational context for query keywords on encrypted data, further
enhanced by security analysis through term frequency-inverse document frequency (TF-1DF) for
information retrieval.

Additionally, an advanced privacy-preserving data fusion strategy (PDFS) was introduced in
[56], which involves classifying sensitive tasks, evaluating task completion, designing work
contracts based on incentive mechanisms, and integrating HE-based data. PDFS employs a
privacy-preserving classification mechanism based on K-means clustering, demonstrating greater
effectiveness than conventional methods.

Moreover, the authors of [57] explored the development of a secure and searchable blockchain
database based on deep learning that employs HE, facilitating secure access to data and key
management through smart contracts, utilizing a Variational Autoencoder (VAE) for
classification purposes.

Cryptographic tools such as HE are essential for protecting local models in federated learning
and ensuring the privacy of medical data against various attack vectors. This includes a resilient

mechanism that guarantees system integrity despite multiple active clients.
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5.5. Differential Privacy (DP)

Differential privacy (DP) is a data science and ML method aimed at protecting individuals'
personal information within datasets. This technique ensures that even if an individual's data is
included in a dataset, specific information about that individual remains confidential and difficult
to access.

In differential privacy, noise (error) is added to the data to prevent direct identification of
individuals. This method guarantees that the output of data analyses will be nearly identical,
whether or not the information of a specific individual is present in the dataset. By introducing
randomness, DP effectively obfuscates individual data points while allowing for useful aggregate
insights.

DP establishes specific constraints on the information that can be revealed about an individual's
data in a database, thereby protecting personal privacy. In healthcare, the primary goal of DP is
to safeguard patient privacy, especially when medical data is shared with healthcare providers or
researchers. The integration of artificial intelligence (Al) can enhance DP protection
mechanisms.

For instance, a strategy for multi-regional task allocation, enhanced with privacy, referred to as
PMTA, is proposed in [58]. This strategy employs DP to introduce noise into patient data, which
is then utilized to train a deep Q-network that leverages a spectral clustering algorithm for
optimal classification.

5.6. Federal Learning (FL)

The increasing volume of data generated by modern healthcare infrastructures poses specific
challenges for traditional Al, which typically focuses on centralized data processing. Federated
Learning (FL), a form of distributed learning, has become a popular solution for intelligent
healthcare systems that involve IoMT devices. It allows for the collaborative training of global
models while keeping private data secure from potential adversaries.

FL is a decentralized approach to ML that enables models to be trained without the need to
collect raw data in a central location. In this method, data remains on local devices such as
smartphones or computers, and the model is trained directly on each device. Instead of sharing
data, only updates to the model (weights and learning parameters) are synchronized with a

central server [59].
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This approach is particularly beneficial in terms of privacy preservation and reducing data
transmission costs, as sensitive data never leaves the local devices. FL is especially useful in
applications involving smartphones, healthcare, and the Internet of Things (IoT), where data is
dispersed and confidential.

By leveraging FL, healthcare organizations can build more robust Al models that learn from a
wider array of data sources while maintaining patient privacy. This decentralized framework also
addresses data sovereignty concerns, as data can remain within its originating jurisdiction,
complying with local regulations.

Furthermore, FL can enhance model performance by aggregating knowledge from multiple local
models, leading to a more generalized understanding of patterns and trends across diverse patient
populations. As healthcare systems increasingly adopt IoMT devices, FL offers a scalable and
privacy-preserving way to harness the power of data for better health outcomes [60].

5.7. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) are tools designed to monitor networks and computer systems
for suspicious activities, cyberattacks, or security breaches. The primary goal of IDS is to detect
and alert on unauthorized or suspicious activities, allowing for prevention of potential intrusions
and threats. Innovative IDS, particularly those incorporating artificial intelligence techniques, are
increasingly important in enhancing the cybersecurity of IoMT, especially given the advanced
complexities of cyberattacks [61]. There are two main types of IDS:

1.Signature-based IDS: These systems utilize a database of known attack patterns and
signatures. If an activity matches one of these known signatures, the IDS generates an alert.
While this type of system is effective for detecting known attacks, it struggles with identifying
new or unknown threats.

2. Anomaly-based IDS: This type of system monitors the normal behavior of a network or
system and identifies any abnormal deviations from this behavior as potential threats. This
method can detect new and unknown attacks, but it may also generate a higher number of false
positives due to its reliance on deviations from established norms.

6. Discussion

As highlighted in the previous section, artificial intelligence significantly enhances the security
of IoMT (Internet of Medical Things). However, despite the remarkable advancements, the
integration of Al into loMT necessitates a thorough reassessment of the underlying technologies
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and their implementation. This integration is not as straightforward as its advancements might
suggest. In this regard, there are limitations and challenges associated with the implementation of
Al algorithms in IoMT devices that warrant comprehensive examination, including hardware
implementation, quantum computing, training Al models, and various ethical concerns.

One significant barrier to integrating Al into the IoOMT ecosystem is the inadequacy of existing
hardware. Effective implementation of Al algorithms requires high-performance computational
capabilities and demands devices specifically designed for healthcare environments. Without the
appropriate hardware infrastructure, the potential benefits of Al can be severely limited,
hampering its effectiveness in real-time monitoring and decision-making processes.

Another limitation involves the training of Al models in the context of loMT. These models
require large and accurate datasets, often constrained in healthcare due to privacy concerns. Such
restrictions limit training data availability and raise ethical issues surrounding data collection,
consent, and the use of sensitive patient information. This is particularly critical in the healthcare
sector, where the stakes are high, and ethical standards must be upheld rigorously.

Challenges in Al Integration

6.1. Hardware implementation:

In addition to the advantages offered by IoMT devices, such as reduced overall costs and
efficient data exchange facilitated by 5G technologies, these devices also possess inherent
limitations. Specifically, their cost-effective design imposes resource constraints, impacting
computational capacity, memory allocation, and energy consumption. More specifically:

1. Computational Capacity: DL and ML algorithms are inherently computationally
expensive due to their reliance on multiplication and accumulation operations and non-
linear activation functions. This complexity makes their execution a challenging task,
particularly as miniaturization of loMT devices is crucial.

2. Memory Allocation: As the complexity of Al algorithms increases, the number of
trainable parameters also rises accordingly. Therefore, the available memory must have
sufficient capacity to accommodate the large number of involved parameters.

3. Energy Consumption: Given their computational demands, DL and ML algorithms
consume significant amounts of energy, leading to reduced battery life in loMT devices.
This results in the need for frequent recharging and complementary use of energy
harvesting techniques to extend their operational lifespan.
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6.2. Quantum computing

Quantum computing represents a type of computation based on the principles of quantum
mechanics, a branch of physics that describes the behavior of particles at very small scales, such
as atoms and photons. Unlike classical computers, which process information using bits (which
can be either 0 or 1 at any moment), quantum computers use qubits that can simultaneously exist
in both 0 and 1 states, a concept known as superposition [62].

Key Features of Quantum Computing:

1. Superposition: A qubit can be in multiple states at the same time. This feature allows
quantum computers to perform complex calculations simultaneously, significantly
increasing their computational power.

2. Entanglement: Qubits can become "entangled" so that the state of one qubit can
instantaneously affect the state of another, regardless of the distance between them. This
feature enables more efficient computations.

3. Interference: Quantum computations use wave interference to enhance correct results
while diminishing incorrect outcomes.

The advantages of quantum computing include extremely high speeds in solving complex
problems, such as factoring large numbers, simulating complex molecules, and optimizing at
levels beyond classical computers' capabilities. However, quantum computing is still in the
research and development phase, facing significant challenges in creating practical and stable
quantum computers.

This technology has widespread applications in areas such as cryptography, artificial
intelligence, quantum chemistry, and optimization, and it could fundamentally change the
landscape of technology and computing in the future.

Quantum computing has the potential to significantly impact cybersecurity, both in terms of
breaking existing cryptographic methods and providing new solutions for secure
communications. Quantum computers could disrupt current encryption systems, necessitating the
development of quantum-resistant algorithms. It is expected that quantum computing will
transform cybersecurity and could potentially affect the security of medical devices and patient
data in the context of loMT. Thus, security measures for IoOMT must evolve to stay ahead of the

potential risks posed by quantum computing. The combination of ML with quantum computing
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may Yyield tools that are not only more accurate and efficient but also more resilient against
quantum attacks.

The emerging field of Quantum ML (QML) utilizes quantum mechanics as defense mechanisms.
While early results in this new area appear promising, there are still barriers to developing these
quantum tools for practical and real-world applications.

6.3. Training Al Models

Training is one of the most critical aspects of Al models, especially when used in the context of
IoMT. It is important to note that when environmental conditions or the features of loMT devices
change, Al models must be retrained and parameterized. Additionally, DL and ML algorithms
trained on limited data may lead to overfitting, resulting in poor model performance. Given these
considerations, healthcare professionals have raised concerns about the performance capabilities
of Al models deployed in these devices. When Al algorithms receive incorrect loMT data, they
may produce inaccurate results, potentially harming patients. Moreover, it is notable that high
false positive rates in diagnostic systems can generate misleading alerts for healthcare personnel.
As a result, the trust of healthcare professionals in loMT devices is contingent upon the accuracy
and reliability of the embedded Al models, especially regarding clinical decision-support
systems [63].

Accuracy ensures that Al can correctly identify real threats (true positives) and non-threats (true
negatives), while precision indicates that the identified threats are relevant and do not include
false positives. One potential solution for increasing trust among medical professionals is the use
of Explainable Al (XAl). XAl may empower healthcare professionals to understand Al models
and potentially trust them, enabling them to verify the proposed outcomes. For this purpose,
glass-box models may provide interpretability of Al system processes by identifying potential
vulnerabilities, thus facilitating the reduction of associated security risks and paving the way for
a reliable loMT environment.

6.4. Ethics

The integration of Al into IoMT raises significant ethical considerations, particularly regarding
patient privacy, data integrity, and the potential for bias in decision-making processes. In our
efforts to enhance the security of IoMT through Al, we must address these ethical challenges.

The deployment of Al in IoMT should be thoroughly evaluated for its ethical implications.
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Concerns such as data usage, algorithmic bias, and Al-driven decision-making arise prominently
with the incorporation of Al into loMT devices [64].

To realize the full potential of Al in healthcare in the near future, four key ethical issues must be
addressed: (1) obtaining informed consent for data use, (2) ensuring safety and transparency, (3)
addressing algorithmic fairness and bias, and (4) protecting privacy. Consequently, given the
application of Al in high-stakes areas like healthcare, the confidentiality of processed data is of
primary importance, emphasizing the need for the development and governance of Al systems
that are responsible, fair, and transparent.

7. Conclusion

IoMT (Internet of Medical Things) represents a transformative paradigm in healthcare, with the
potential to revolutionize patient care, diagnosis, and treatment. However, the expansion of
IoMT devices brings significant security and privacy challenges. Motivated by the promising
potential of Al-related technologies, this work investigates the implementation of Al methods to
mitigate cybersecurity challenges and enhance the security and privacy of loMT.

Recent research indicates a substantial increase in interest in the literature concerning IoMT
security. In this context, we systematically gathered and classified extensive research in this
field. Our comprehensive review highlights that integrating ML and DL techniques can
significantly improve the cybersecurity of Io0MT. This improvement could be beneficial for
enhancing the security and privacy of loMT devices.

Furthermore, considering the numerous advantages of Al technologies, we provide a systematic
overview of the current scientific trends in this emerging field, in contrast to their primary
cybersecurity counterparts. The promising potential of Al-based cybersecurity in the IoMT
landscape is expected to play a crucial role in protecting patient data, ultimately fostering a new
era of personalized and data-driven healthcare.

By addressing the security and privacy concerns associated with loMT, Al can safeguard
sensitive patient information and enhance the overall effectiveness of healthcare delivery
systems. The ongoing evolution of Al methodologies offers a hopeful outlook for the future of
healthcare, where technology and patient care can merge to create safer, more efficient

environments for providers and patients.
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