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ABSTRACT 

The growth of Internet of Things (IoT) devices in the healthcare sector has 

enabled the new era of the Internet of Medical Things (IoMT). However, 

IoT devices are vulnerable to various cybersecurity attacks and threats, 

leading to negative consequences. Cyberattacks can harm IoMT devices in 

use and risk human lives. Given the promising potential of Artificial 

Intelligence (AI)-related technologies to enhance specific cybersecurity 

measures, this article provides a comprehensive review of this emerging 

field to introduce modern cybersecurity technologies that leverage AI 

techniques to improve performance and address security and privacy 

vulnerabilities. Our findings indicate that integrating Machine Learning 

(ML) and Deep Learning (DL) techniques enhances cybersecurity measures' 

performance, speed, reliability, and efficiency. This issue could be useful in 

improving the security and privacy of IoMT devices. This article outlines 

the numerous advantages of AI technologies compared to traditional 

cybersecurity technologies, such as blockchain, anomaly detection, 

homomorphic encryption, differential privacy, and federated learning. We 

conclude with considerations for future research, emphasizing the 

promising Potential of AI-based cybersecurity in the IoMT landscape, 

particularly in protecting patient data and data-driven healthcare. 

1. Introduction 

The term "Internet of Things" (IoT) was introduced by British entrepreneur Kevin Ashton [1]. 

He described a world where all inanimate objects have a digital identity and can be managed and 

controlled through computers. All people are connected through the Internet, but according to 

the title,  things are connected in the Internet of Things. IoT, a concept of interconnected sensors 
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called "things," originates from the Internet Protocol (IP). The Internet of Things refers to the 

integration of physical objects equipped with sensors and actuators that can communicate with 

computer systems through wired or wireless networks [2]. The rapid advancement in IoT 

technology plays a crucial role in the healthcare sector, making the Internet of Medical Things 

(IoMT) increasingly common. Additionally, developing high-speed network systems and the 

growing use of portable monitors, smartphones, wearable devices, and electronic health records 

in healthcare contribute to the significant growth of IoT devices in the healthcare sector [3]. 

Integrating IoT devices into healthcare systems enhances connectivity and system 

interoperability, enabling collaboration between isolated systems in the healthcare domain [4-6]. 

However, IoT devices are vulnerable to various security threats and attacks, as they lack self-

protection capabilities. 

Recent research has shown that over 90% of IoT devices transmit data insecurely, with 57% 

vulnerable to attacks that could leak sensitive data. Cyberattacks not only target IoMT devices 

but also pose a threat to human lives [7]. 

IoMT, regarded as a collection of medical devices and related software applications, has 

emerged as a specific aspect of IoT, focusing on the integration and interoperability of medical 

devices. This makes it a powerful tool in the healthcare sector. Additionally, it provides 

unparalleled opportunities for collecting, analyzing, and exchanging biomedical data, 

revolutionizing the delivery of healthcare services [8]. 

One of the most critical debates in the IoMT field involves a trade-off between patient privacy, 

device usability, and data accessibility. Maintaining patient confidentiality while using patient 

data for therapeutic and research purposes remains a major challenge [9]. Additionally, security 

levels may vary depending on the manufacturer of the IoMT device, which often leads to 

vulnerabilities within the healthcare ecosystem. 

Despite the numerous benefits IoMT offers in daily healthcare, such as effective patient 

monitoring and improved decision-making, it has also raised several security concerns. Notably, 

cybersecurity breaches have significantly impacted the global healthcare industry. In 2023, at 

least 2,620 organizations were affected, leading to the theft of 77.2 million records, with 78.1% 

of the affected entities based in the United States [10]. These breaches, primarily attributed to 

hacking and ransomware attacks, accounted for 88.52% of incidents and 99.94% of the 

compromised records [11]. According to IBM's 2023 Cost of a Data Breach Report, the 
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healthcare sector consistently incurs the highest costs related to data breaches compared to other 

industries, rising from $10.1 million in 2022 to $10.9 million in 2023 [12]. 

The structure of this review article is as follows. In Section 2, we present some previous studies 

in the field of cybersecurity. Section 3 introduces networked medical devices. In Section 4, we 

discuss the security and privacy of IoMT devices. Section 5 highlights the role of artificial 

intelligence technologies in enhancing IoMT security. Before concluding in Section 7, we 

address future research challenges in Section 6. 

2. Literature review 

Recent scientific reviews on this topic have highlighted the security and privacy features, threat 

models, requirements, and major challenges affecting the security of IoMT devices [8, 9, 13, 14]. 

Specifically, in [15], the authors present recent contributions focusing on implementing formal 

methods to improve the security of IoMT ecosystems. A recent review on security threats and 

associated countermeasures in IoMT also focuses on developing advanced security 

countermeasures, considering the primary security objectives [16]. Recently, the authors of [17] 

proposed an innovative classification for intrusion detection schemes tailored to IoMT. In 

contrast to the reviews above, some cybersecurity technologies, especially in the context of 

Networked Medical Devices (NMDs), seem to benefit from the increasing potential of Artificial 

Intelligence (AI) [18]. 

AI, through its ability to analyze large amounts of data and detect abnormal patterns, enhances 

patient data's integrity, confidentiality, and availability. Additionally, AI-based threat detection 

can be useful in identifying emerging threats and vulnerabilities, thereby improving the security 

of modern healthcare systems [17]. In this context, specific reviews discuss several privacy and 

security challenges in healthcare systems and present various privacy-preserving techniques in 

DL and ML for secure data mining and processing [19, 20]. 

Explainable Artificial Intelligence (XAI) refers to a set of methods and techniques to increase the 

transparency and interpretability of decisions made by AI models. Understanding how the model 

operates and makes decisions in traditional AI systems can be challenging, especially in complex 

models like deep neural networks. XAI seeks to transform this "black box" into a more 

interpretable system, enabling users to understand and trust AI decisions. XAI methods include 

the following: 
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1. Model-Specific Methods: These methods are designed for specific models and include 

inherently transparent and interpretable algorithms. For example: 

o Decision Trees: These models create a hierarchy of decisions that can easily 

explain how each decision was made. 

o Linear Models: Because these models use specific weights for each feature, it is 

straightforward to understand the impact of each feature on the decisions. 

2. Model-Agnostic Methods: These methods can be applied to any AI model and typically 

assist in explaining complex models such as deep neural networks. Some of these 

methods include: 

o LIME (Local Interpretable Model-agnostic Explanations): This method 

examines the decisions of a model in small, local areas of the data space and 

provides simple explanations for those decisions. 

o SHAP (Shapley Additive Explanations): This method is based on game theory 

and explains how much each input feature contributes to the model's output. 

o Saliency Maps: For computer vision models (such as CNNs), these maps 

highlight the key areas of images that have had the most significant impact on the 

decisions. 

3. Sensitivity Analysis: This method investigates how changes in inputs lead to changes in 

model outputs, helping users understand which features significantly influence the final 

decision. 

Importance of XAI: 

• Reliability: Transparency in decision-making increases users' trust in AI systems. 

• Privacy and Fairness: Explaining models can uncover and correct hidden biases, preventing 

unfair decisions. 

• Regulatory Compliance: In some instances, such as data protection laws, it is necessary to 

explain the reasoning behind decisions made by AI systems to individuals. 

Similarly, the authors [21] focus on the use of AI as a cybersecurity tool in the healthcare sector, 

while the authors [22] discuss the security aspects of Federated Learning (FL) in IoMT 

applications within smart healthcare ecosystems. Enhancing cybersecurity performance through 

AI involves using advanced technologies to improve threat detection, response time, adaptability 

to evolving threats, and the overall robustness of security measures. Integrating AI is crucial 
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when addressing challenges from a complex threat landscape, enabling effective cybersecurity 

operations. 

The primary aim of this review is to fill the gap in the relevant literature concerning modern 

cybersecurity technologies that utilize AI techniques to enhance performance and mitigate 

security and privacy vulnerabilities. Considering the numerous advantages of AI technologies 

compared to their traditional cybersecurity counterparts—including blockchain, anomaly 

detection, homomorphic encryption, differential privacy, federated learning, and more—we 

provide a structured overview of current scientific trends. 

3. Networked Medical Devices  

In the distinct realm of IoMT, Networked Medical Devices (NMDs) encompass a wide range of 

interconnected devices via the Internet and wireless communication channels. These include 

Implantable Medical Devices (IMDs), Wearable Medical Devices (WMDs), Remote Patient 

Monitoring (RPM) systems, and Hospital Network Devices (HNDs).  

 

Figure 1: Internet of Things ecosystem 

The emerging IoMT ecosystem and its corresponding NMDs are illustrated in Figure 1, where a 

network of hospitals can exchange medical data for clinical and research purposes. This enables 
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physicians and researchers to benefit from medical information obtained from a more significant 

number of patients. 

The Internet of Things ecosystem is diverse and includes various components, and its 

development is impossible without identification and communication between the components. 

The IoT ecosystem is based on different layers: hardware, communication, security, platforms, 

information storage, processing, and software. 

3.1. Implantable Medical Devices (IMDs): 

IMDs are surgically placed within a patient's body for several purposes: (1) to address specific 

medical conditions by replacing or augmenting the function of a damaged organ or anatomical 

structure, (2) to monitor various bodily functions, and (3) to deliver medications or other 

therapies directly to a targeted area. IMDs can be classified into the following categories [23]: 

• Cardiovascular Devices: Used to treat heart and vascular-related diseases. 

• Neurological Devices: Used for treating conditions related to the nervous system, 

including epilepsy, Parkinson's disease, and chronic pain. 

• Orthopedic Devices: Used to treat conditions related to bones and joints. 

• Cochlear Devices: Used for the treatment of hearing loss. 

• Implantable Drug Delivery Devices: These devices deliver medications directly to 

targeted areas of the body, such as tumors, through implantable pumps. 

IMDs are typically made from biocompatible materials and are often powered by batteries or 

other energy sources. It is important to note that patients who are candidates for IMDs must be 

closely monitored to ensure the device's proper function and to address potential issues, such as 

device rejection or malfunction [24]. Although IMDs have significantly improved healthcare and 

brought revolutionary advancements in saving lives, they also present notable security 

challenges. 

3.2. Wearable Medical Equipment (WMDs): 

WMDs are a rapidly growing category of healthcare technology that can be worn on the body to 

monitor, track, or detect various health parameters. They often utilize advanced sensors and 

wireless connectivity to collect and transmit data. In addition, WMDs offer several benefits, 

including real-time health monitoring, increased patient engagement, and improved healthcare 

outcomes. They have been utilized in research and clinical trials to collect objective data, track 

patient progress, and evaluate treatment effectiveness. Among WMDs, fitness trackers are the 
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most popular due to their ability to monitor activity levels, heart rate, sleep patterns, and calories 

burned. Continuous glucose monitors are devices designed to track glucose levels in individuals 

with diabetes, providing real-time data to manage blood sugar levels and facilitate informed 

treatment decisions [25]. 

By continuously tracking vital signs and identifying irregularities or patterns, WMDs have the 

potential to facilitate early detection of potential health issues, enabling timely medical 

interventions. However, WMDs may also pose significant security concerns. The sensitive health 

data they generate inherently raises privacy and confidentiality issues, necessitating robust 

encryption and secure data storage. 

3.3. Remote Patient Monitoring Systems (RPMs): 

RPM systems monitor patients and collect relevant medical data remotely. They utilize multiple 

sensors to transmit data from the patient to healthcare professionals, enabling continuous 

monitoring and timely intervention. It is noteworthy that RPM systems provide patients access to 

secure online portals or mobile applications to view their health data, track their progress, receive 

educational materials, and communicate with healthcare providers remotely [26]. 

RPMs are based on wireless technologies such as Bluetooth, Wi-Fi, and cellular networks, while 

the transmitted data is typically encrypted to protect privacy and confidentiality. Additionally, 

the transferred patient data is stored and analyzed using specialized software [27]. Consequently, 

complex algorithms are employed to process the data, identify potential anomalies, and send 

alerts to medical staff if necessary, thereby preventing data leaks and enhancing patient safety. 

3.4. Hospital Network Devices (HNDs): 

HNDs consist of devices and tools medical professionals use in hospitals and other clinical 

settings for diagnosing, treating, and monitoring patients. Like IMDs and WMDs, HNDs can 

vary significantly based on patient needs and the conditions being treated. 

Common HNDs include: 

• Diagnostic and Imaging Equipment: Such as X-ray machines, computed tomography 

(CT) scanners, magnetic resonance imaging (MRI) machines, and ultrasound scanners, as 

well as laboratory equipment for analyzing blood, urine, and other bodily fluids. 

• Monitoring Devices: For example, blood pressure monitors, ECG machines, and pulse 

oximeters. 
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• Infusion Pumps: Used to deliver medications, fluids, and other substances directly into a 

patient’s bloodstream. 

• Rehabilitation Equipment: Including physical therapy devices, exercise equipment, 

splints, braces, and more. 

• Patient Positioning Equipment: Hospital beds and stretchers are used to position 

patients for various medical procedures and to ensure comfort during their hospital stay. 

Ensuring medical equipment security in hospitals is critically important in the modern healthcare 

environment, which is becoming increasingly interconnected. As more medical devices join 

hospital networks, the exposure to cyberattacks rises, making them vulnerable to cybercriminals 

seeking to exploit software or hardware weaknesses. Malicious attacks on medical equipment in 

hospitals can have serious consequences, such as compromising patient safety and privacy and 

disrupting hospital operations. 

4. Security and Privacy of IoMT devices 

Although IoMT devices offer numerous benefits, they also present challenges due to their 

vulnerability to security threats and attacks. It is essential to identify such threats and attacks to 

ensure the integrity, availability, confidentiality, and privacy of sensitive patient health data. 

The interconnected nature of IoMT devices can expose them to various cyber risks, including 

unauthorized access, data breaches, and potential manipulation of device functionalities. As these 

devices collect and transmit sensitive health information, any compromise can lead to severe 

consequences, including breaches of patient confidentiality, disruptions in healthcare delivery, 

and even risks to patient safety. 

To address these challenges, it is crucial to implement robust security measures that encompass 

encryption, secure communication protocols, access control mechanisms, and regular security 

assessments. Additionally, healthcare providers must foster a culture of security awareness 

among staff and patients to effectively mitigate risks associated with IoMT devices. 

4.1. Security and Privacy Threats 

As modern medical devices have evolved from standalone sensors to more integrated devices, 

their security is broadly understood through a layered approach that connects various 

technologies, devices, sensors, and systems via electrical, electronic, and wired or wireless 

connections. The structure and functionality of each layer are described in Figure 2. 
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Figure 2: IoMT network layers 

• Perception Layer - Sensor systems for Data Collection 

The perception layer, often called the physical layer, is the lowest layer of the IoMT ecosystem. 

It comprises data sources such as smart objects, health monitoring devices, and mobile 

applications integrated with sensors like infrared, medical, smart device, cameras, and Global 

Positioning Systems (GPS). These sensor systems detect environmental changes, identify 

objects, locations, and measurements, and convert information into digital signals. They can also 

store data for future use. 

In the perception layer, unauthorized physical access to medical devices can pose significant 

security risks. Additionally, malicious actors may attempt to manipulate medical devices by 

physically altering their components or configurations. 

This can include accessing the internal components of a device, manipulating hardware or the 

operating system, or inserting malicious components. Threats at the physical layer may also 

manifest as intentional or unintentional interference with the operation of medical devices caused 

by electromagnetic interference, power outages, or intentional jamming of wireless signals. From 

a network layer perspective, Networked Medical Devices (NMDs) must be secure to protect 

patient data and ensure device functionality. Spoofing, Distributed Denial of Service (DDoS) 

attacks, Sybil attacks, and sinkhole attacks are the primary types of threats typically identified at 

this layer [28]. 

• Network layer - Gateway layer 



Talayeh Ghodsizad  International Journal of Sustainable 

Applied Science and Engineering 
 

84 

As mentioned, sensors require a connection to a gateway that facilitates communication through 

networks, storing information either locally or centrally. Communications can occur at various 

frequencies and be short-range, such as RFID, wireless sensor networks, Bluetooth, Zigbee, and 

low-power Wi-Fi, or longer-range, such as cloud computing and blockchain. 

Networks can include Personal Area Networks (PAN) like Zigbee, Bluetooth, and Ultra 

Wideband (UWB), or Local Area Networks (LAN) such as Ethernet and Wi-Fi connections. 

Wide area networks (WANs) like Global System for Mobile Communications (GSM) do not 

require direct connectivity but utilize servers and backup applications. Wireless Sensor Networks 

(WSN) are particularly useful for supporting many sensor nodes, especially in sensors that 

require low power connectivity and data rates. 

• Transfer Layer - Data Storage 

The transport layer plays a crucial role in the communications of the IoMT network. It receives 

data from applications and segments it for transmission into smaller packets, ensuring data 

integrity and reliability by detecting and correcting errors. The transport layer also manages the 

flow of data to prevent network congestion and allows multiple applications to share the same 

network connection [5]. This layer provides two main protocols: the Transmission Control 

Protocol (TCP), which prioritizes reliability, and the User Datagram Protocol (UDP), which 

enhances speed for real-time applications. It is important to note that the transport layer enables 

smooth and efficient data transfer between IoMT devices. 

• Application Layer  

The application layer plays a crucial role in data processing, user interaction, and device 

functionality for NMDs. The primary function of this layer is to interpret data and provide 

specific application services. It utilizes AI and deep learning to understand electronic health 

record data and monitor trends and changes in the collected data (data repository). However, this 

layer is susceptible to various security threats that can compromise patient data, device integrity, 

and system accessibility. 

4.2. Active and passive attacks 

The security and privacy threats outlined in the previous section are closely related to passive 

and active attacks on NMDs. Passive attacks, such as eavesdropping, are employed by potential 

attackers to gain unauthorized access to sensitive data, such as patient health records and 

treatment plans exchanged between NMDs [29]. Attackers may passively intercept 
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communications to obtain valuable information, jeopardizing the patient's right to privacy and 

confidentiality. Furthermore, through passive attacks, attackers often intercept and alter 

transmitted data, leading to misdiagnoses, incorrect medication dosages, or other adverse 

consequences. 

Active attacks, such as injection attacks (SQL injection, code injection, and others), exploit 

vulnerabilities in NMD application software to inject malicious code. This can lead to 

unauthorized access, data corruption, and system compromise. Active attacks include denial-of-

service (DoS) attacks, where attackers overwhelm NMDs with large volumes of malicious traffic 

or requests. As a result, devices may become unavailable, disrupting vital medical services. In 

this context, active malware attacks threaten the operation of networked medical devices and can 

facilitate unauthorized access or control. Malware may be introduced through various means, 

including infected software updates and compromised network connections [30]. A detailed 

classification of attacks against NMDs is provided in the following paragraphs. 

4.2.1. Malware Attacks 

The term "malware" generally refers to malicious software that can infect medical devices and 

compromise their security and functionality. Malware may jeopardize sensitive data, manipulate 

device behavior, or potentially cause physical harm to patients. 

Ransomware is a relatively popular malware attack that can encrypt the data on a medical device 

and render it inoperable until a ransom is paid. Ransomware attacks on medical devices can lead 

to significant disruptions in patient care and may compromise the confidentiality and integrity of 

sensitive medical data [16]. Additionally, Trojan horses are malicious programs that appear to be 

legitimate software but typically contain hidden malware that can jeopardize the security of a 

medical device. Trojan attacks can steal sensitive data or gain unauthorized access [31]. Botnets 

are networks of infected devices that an attacker can control. Botnets can launch DDoS attacks, 

steal sensitive data, or utilize the medical device as a proxy for other attacks. Another type of 

malware attack involves backdoors, vulnerabilities intentionally embedded in middleware or 

device software, allowing unauthorized access to the device. 

4.2.2. Sybil Attacks 

Sybil attacks are a security threat when an attacker creates multiple fake identities, referred to as 

"Sybil nodes," to infiltrate a network and gain access to sensitive information. In the context of 
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IoMT, Sybil attacks can be particularly challenging as they may compromise the connected 

devices and the data they collect. 

Popular defensive strategies against Sybil attacks include social graph-based Sybil detection, 

behavior classification-based Sybil detection, and mobile Sybil detection. By implementing 

authentication mechanisms, reputation-based systems, distributed consensus algorithms, secure 

routing protocols, and machine learning-based techniques, healthcare organizations can mitigate 

the risk of Sybil attacks and ensure the security of their IoT networks. 

Identity-based Sybil attacks are specific types of Sybil attacks in which the attacker creates 

multiple fake identities based on the same physical identity, making it difficult to identify and 

localize the attack [32]. 

4.2.3. Routing Attacks 

Routing attacks threaten the confidentiality, integrity, and availability of sensitive medical data, 

potentially endangering patient health. One type of routing attack, a Man-in-the-Middle (MitM) 

attack, involves intercepting and modifying the communication between a medical device and its 

intended destination. This allows the attacker to steal or alter sensitive medical data. 

Additionally, routing table attacks may attempt to manipulate a medical device's routing table, 

causing it to send data to an unintended destination or preventing it from communicating with 

other devices on the network [33]. Denial-of-Service (DoS) attacks aim to disrupt the normal 

functioning of a medical device by overwhelming its routing infrastructure with traffic, rendering 

it unresponsive or even shutting it down. 

An attacker may also exploit vulnerabilities in the routing protocol used by a medical device to 

gain unauthorized access, steal sensitive data, or manipulate its behavior. DoS attacks have been 

extensively studied in the literature. Variants of DoS attacks include battery depletion, botnets, 

and several others. Flooding is recognized as a type of DoS attack that leads to resource blockage 

and overload in the healthcare environment. Different types of DoS attacks can be categorized 

based on their target network layer. 

4.2.4. Battery Drain Attacks 

Attacks on implantable and wearable devices maliciously aim to drain the battery of these 

devices, potentially harming patients who rely on them for monitoring or treatment. Closely 

related to other attacks, battery drain can occur due to malware infecting a device, causing it to 

consume excessive energy. 
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DDoS attacks may also overload the communication channels of implantable devices, forcing 

them to expend more energy to maintain connectivity. An attacker could physically manipulate a 

wearable or implantable device to reduce energy-saving features or increase power consumption. 

Regular software updates can typically help address security vulnerabilities in these devices. 

Proper encryption can protect wearables or implantables from malware attacks that lead to faster 

battery drainage. At the same time, access control measures, such as multi-factor authentication, 

can prevent unauthorized access and manipulation of implantable devices [34, 35]. 

4.2.5. Firmware modification 

Firmware is the software used to control the hardware of a device. Due to its inherent software 

nature, this operating system is vulnerable to various digital attacks. An attacker can exploit such 

vulnerabilities to gain access to the operating system's core [36]. 

Specifically, an attacker may access, modify components, or entirely replace the software to steal 

information, corrupt data, recreate routing rules, create a launchpad for further attacks, etc. 

Operating system attacks in IoMT are quite common and generally include the following: 

(a) Unauthorized Access: The attacker gains access to the device and sensitive personal data 

and information. 

(b) Device Control: The attacker takes partial or full control of the device. 

(c) Malware Installation: The attacker installs malware alongside the software, which can be 

transferred to other devices or used as a starting point for further attacks. 

(d) DDoS Attacks: Changes to the device's operating system turn it into a bot that supports 

potential DDoS attacks on the network. 

(e) Data Loss: Operating system attacks can lead to the loss or corruption of data/information 

stored on the device. 

(f) Physical Damage: Since the operating system controls the hardware, tampering with it can 

physically damage the device or specific components. Attackers can also reverse-engineer the 

operating system of a medical device to find vulnerabilities or modify the system to suit their 

needs. Additionally, they can exploit vulnerabilities during the update process of a medical 

device to install unauthorized operating system updates that change the device's behavior or even 

introduce new vulnerabilities [37]. 
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4.2.6. Eavesdropping 

Eavesdropping occurs when a hacker intercepts, deletes, or modifies data transmitted between 

two devices. This type of attack is also known as a spying attack. Eavesdropping relies on 

insecure network communications to access data in transit between devices. Through 

eavesdropping attacks, sensitive information is obtained due to insecure communication 

channels. 

Several medical and wearable devices, such as blood pressure monitors and smartwatches, have 

vulnerabilities that allow attackers to obtain sensitive information. To further explain the 

definition of "eavesdropping attack," it usually occurs when a user connects to a network where 

traffic is not secure or encrypted and sends sensitive data to a colleague. Data is transmitted over 

an open network, allowing the attacker to exploit and intercept a vulnerability through various 

methods. 

Detecting eavesdropping attacks is often difficult. Unlike other forms of cyber attacks, a bug or 

eavesdropping device may not negatively impact the performance of devices and networks. With 

eavesdropping, attackers can employ various methods to carry out attacks, typically involving 

using different devices to listen to conversations and monitor network activities [38]. 

 

4.2.7. Cloud attacks, Device Simulation, and Sensor Spoofing 

Cloud attacks target cloud-based service platforms, such as computing services, storage services, 

or hosted applications. Cloud computing is a computational model where computing resources 

(like servers, storage, and data processing) are provided over the Internet from centralized data 

centers. Users can access these resources via the Internet without needing physical hardware. 

Key features of cloud computing include scalability, remote accessibility, and reduced 

infrastructure costs. 

Features of Cloud Computing: 

• Data processing and storage in centralized data centers. 

• Suitable for applications that require heavy processing. 

• Dependent on an internet connection with a relatively longer delay. 

• Suitable for processing massive data and performing complex calculations. 

Cloud attacks can have severe consequences, including data breaches, data loss, unauthorized 

access to sensitive information, and service disruptions. As more organizations and individuals 
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rely on cloud computing for data storage and processing, the number of potential targets for 

attackers also increases. Many organizations may be unaware of the risks and vulnerabilities 

associated with cloud computing or may not have adequate measures to protect against these 

threats. 

Cloud attacks include modifying cloud infrastructure, a technology that has been relatively 

recently integrated into healthcare. Device simulation involves mimicking devices to perform 

malicious activities within the IoMT environment. If a successful attack occurs, the attacker 

gains control of a sensor and alters the medical device's functionality, potentially jeopardizing 

patient safety and data integrity [39]. 

4.2.8. Perception Attacks 

Perception attacks are associated with vulnerabilities at the lowest level of the transmitted signal, 

regardless of the medium used. Perception attacks often manifest as multiple access (MAC) layer 

attacks. 

At the perception layer, attackers may manipulate the data generated by medical devices or 

sensors, making vital signs appear stable when they are not. This can lead healthcare providers to 

make incorrect decisions based on false information, potentially endangering patients' lives. 

4.2.9. Bluetooth Attacks 

Bluetooth attacks can be classified into several categories, mainly because Bluetooth technology 

implements its layered architecture. Several attacks of this particular type include blue smacking 

(DoS), Blues nerfing and Bluebugging (data breach), Bluejacking (spoofing), and Blueprinting 

(sniffing). 

Bluejacking is an attack in which Bluetooth sends unsolicited messages to a medical device. 

Messages can steal sensitive data or cause unpredictable device behavior [40]. 

Bluesnarfing exploits vulnerabilities in the Bluetooth protocol to gain unauthorized access to a 

medical device. Once an attacker gains access, they can steal sensitive data or manipulate the 

behavior of that device. Users of medical programs are often required to log into an online 

account, where they enter their medical information provided by WMD or IMD. The relevant 

information has been collected and stored. If malicious agents gain access to these credentials, 

they can alter or manipulate medical data in various ways, posing a significant risk to patient 

health monitoring [41]. 
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Due to numerous security attacks on NMD, From passive attacks, such as eavesdropping, to 

active attacks, such as malware infiltration, it is clear that protecting these devices' integrity, 

confidentiality, and availability is paramount. These attacks are a significant risk to patient 

privacy and the effectiveness of medical treatments. By examining these vulnerabilities and their 

implications, it is clear that advanced technologies must be developed to enhance NMD 

defenses. Are used. With its ability to analyze large amounts of data, the ML algorithm can 

detect anomalies and predict possible security breaches. In the next section, we will examine the 

application of AI techniques in IoMT cyber security. We strive to ensure optimal performance 

and reliability while mitigating multiple threats and attacks. 

5. Artificial intelligence to increase IoMT security 

Increasing exposure to NMD against security threats and attacks, as described in Section 4, 

highlights the necessity of improving the performance and effectiveness of cyber security. To 

address this growing concern, this section presents the central role of ML and DL methods in 

increasing the security of IoMT devices. We will check. AI effectively contributes to the most 

advanced cybersecurity technologies, from anomaly detection and intrusion detection systems to 

homomorphic encryption, and can reduce risks, increase patient safety, and protect sensitive 

medical data. We aim to provide a comprehensive review of the use of ML technologies and DL 

To create secure and sustainable IoMT ecosystems.  

5.1. Blockchain 

Blockchain (BC) comprises a series of modules that store data. Modifying data becomes 

exceptionally challenging once data is added to a block, making blockchain an extremely secure 

information network. In a blockchain network, interactions between nodes occur through 

transactions, which are subsequently collected into information blocks after being verified by 

designated network nodes. The recorded data blocks are secured against tampering using a 

consensus mechanism, enabling decentralized usage. Interactions with other devices or peers do 

not require central authentication, allowing healthcare applications to exchange patient 

healthcare data securely. 

In this context, BC-based methods to mitigate DDoS attacks can be classified based on their 

deployment locations as network-based, near the attacker, near the victim, or a combination, 

emphasizing IoT and SDN architectures [42]. 

The structure of a block consists of three components: 
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• Data: Sender, receiver, and transaction amount. 

• Hash: This is a unique code for each block, akin to a fingerprint. 

• Previous Block Hash: Each block is linked to the others, creating a chain. 

Therefore, a minor change in one block can profoundly affect the entire blockchain. An 

additional security layer has been implemented to reduce the risk of unauthorized access by 

hackers. 

A significant challenge to integrating BC into IoMT arises from the limited computational 

resources of NMDs, as BC typically does not operate in real time. However, it has been shown 

that BC can enhance healthcare [43]. Combining artificial intelligence with BC technology in the 

context of NMDs improves security by providing real-time threat detection, adaptive security 

measures, and data protection. Nevertheless, it is essential to consider computational 

requirements, data privacy concerns, and the need for continuous model updates when 

implementing AI models for security in healthcare environments. 

In [44], a three-layer neural network (TNN) and BC technology were combined into a single 

framework that ensures the integrity and privacy of transmitted medical data. Additionally, [45] 

introduced an integrated approach using a bidirectional long short-term memory (LSTM) model 

and BC technology to provide early stress detection for NMD users. A new secure authentication 

approach utilizing K-Nearest Neighbors (KNN) and ML has also been proposed, improving 

computation time compared to traditional KNN algorithms [46]. 

5.2. Authentication Schemes 

In healthcare systems, authentication and authorization mechanisms are critical security 

components [47]. Upon successful authentication, an entity is granted access to the healthcare 

system by verifying unique attributes or confidential information. Given the necessity for privacy 

in healthcare systems, IoMT must encrypt patient data using a secure encryption key. 

Distributing a secure key, especially in symmetric encryption environments involving numerous 

participants, is daunting. In asymmetric encryption, the key distribution challenge is resolved 

using a pair of keys—one public and one private—although these keys are generally larger. 

ML enables the development of adaptive authentication systems that continuously evaluate user 

behavior and adjust authentication requirements accordingly. For example, a system can detect 

changes in typing behavior or login location for healthcare providers and initiate additional 

authentication if necessary. This could facilitate biometric authentication methods in medical 
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devices, such as fingerprint, facial, or voice recognition [48]. These biometric factors are unique 

to individuals and provide a higher security level than traditional authentication methods. 

Decentralized authentication for patient-authorized wearable devices is facilitated using ML 

techniques to predict and transmit authentication features to the next trusted reference. In [49, 

50], a multi-layer security authentication scheme is proposed, encompassing data, network, and 

application layers. Feature extraction at the application layer involves using a QRS set from ECG 

signals, applying Legendre approximation, and a custom multi-layer perceptron for classifying 

ECG data. Conversely, [51] discusses a lightweight hybrid authentication scheme incorporating 

Supervised ML (SML) followed by an encryption and decryption scheme for secure data 

transmission through wireless communication channels. SML facilitates decentralized 

authentication for patient-authorized wearable devices to minimize computational costs, 

authentication time, and communication expenses, particularly during data transfer between 

different data collection areas. 

A privacy-preserving deep learning neural network framework, as described in [52], is 

implemented to safeguard data transmission against adversarial attacks while reducing 

encryption/decryption times. A new privacy-preserving method based on a ciphertext policy has 

been introduced, integrating the advantages of private, public, and master keys to create patient-

centric access control. In study [53], the authors propose a privacy-preserving scheme for 

collecting patient data from IoMT devices in disease prediction systems. Following the initial 

authentication phase, elliptic curve cryptography based on log-of-round values is applied to 

enhance security during data transmission. A deep learning neural network utilizing an advanced 

genetic swarm algorithm is employed for disease prediction. Lastly, [47]presents research on 

delivering reliable ECG data by applying domain customization attacks within a supervised 

learning platform. After receiving data from devices, a combination of unique features is 

considered as input in a support vector machine (SVM) with various data preprocessing 

techniques to refine the platform’s verification process. 

5.3. Anomaly Detection (AD) 

Anomaly detection algorithms are crucial in intrusion detection systems, monitoring and 

identifying attacks or unusual activities within IoMT devices. These algorithms operate on the 

premise of detecting anomalies, defined as extraordinary events that significantly deviate from 

the normal behavior of a system. The complexity of anomaly detection in IoMT arises from the 
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diversity and multitude of interconnected devices and sensors, each with varying computational 

resources, communication protocols, and capabilities. 

Integrating ML and DL algorithms is proposed as a promising strategy to mitigate these 

complexities. In [54], the authors introduce a biometric security framework based on ML that 

utilizes features from ECG signals to authenticate users during the testing phase. This approach 

leverages unique biometric identifiers derived from polynomial coefficient approximations. 

5.4. Homomorphic Encryption (HE) 

Homomorphic encryption (HE) refers to a set of cryptographic techniques that allow for 

computations on encrypted data without decryption. This capability ensures that the results of 

computations remain encrypted, facilitating data processing without compromising the 

associated privacy. HE's ability to preserve privacy in outsourced storage and computation is 

particularly noteworthy, as it allows data to remain encrypted even when processed in cloud 

environments. 

Recent studies indicate that the effectiveness of HE in IoMT is enhanced through the integration 

of MLand DL techniques. For instance, a design for efficient privacy-preserving text search in 

cloud-based IoMT systems, utilizing HE and bilinear mapping, was proposed in [55]. This 

design aims to establish a relational context for query keywords on encrypted data, further 

enhanced by security analysis through term frequency-inverse document frequency (TF-IDF) for 

information retrieval. 

Additionally, an advanced privacy-preserving data fusion strategy (PDFS) was introduced in 

[56], which involves classifying sensitive tasks, evaluating task completion, designing work 

contracts based on incentive mechanisms, and integrating HE-based data. PDFS employs a 

privacy-preserving classification mechanism based on K-means clustering, demonstrating greater 

effectiveness than conventional methods. 

Moreover, the authors of [57] explored the development of a secure and searchable blockchain 

database based on deep learning that employs HE, facilitating secure access to data and key 

management through smart contracts, utilizing a Variational Autoencoder (VAE) for 

classification purposes. 

Cryptographic tools such as HE are essential for protecting local models in federated learning 

and ensuring the privacy of medical data against various attack vectors. This includes a resilient 

mechanism that guarantees system integrity despite multiple active clients. 
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5.5. Differential Privacy (DP) 

Differential privacy (DP) is a data science and ML method aimed at protecting individuals' 

personal information within datasets. This technique ensures that even if an individual's data is 

included in a dataset, specific information about that individual remains confidential and difficult 

to access. 

In differential privacy, noise (error) is added to the data to prevent direct identification of 

individuals. This method guarantees that the output of data analyses will be nearly identical, 

whether or not the information of a specific individual is present in the dataset. By introducing 

randomness, DP effectively obfuscates individual data points while allowing for useful aggregate 

insights. 

DP establishes specific constraints on the information that can be revealed about an individual's 

data in a database, thereby protecting personal privacy. In healthcare, the primary goal of DP is 

to safeguard patient privacy, especially when medical data is shared with healthcare providers or 

researchers. The integration of artificial intelligence (AI) can enhance DP protection 

mechanisms. 

For instance, a strategy for multi-regional task allocation, enhanced with privacy, referred to as 

PMTA, is proposed in [58]. This strategy employs DP to introduce noise into patient data, which 

is then utilized to train a deep Q-network that leverages a spectral clustering algorithm for 

optimal classification. 

5.6. Federal Learning (FL) 

The increasing volume of data generated by modern healthcare infrastructures poses specific 

challenges for traditional AI, which typically focuses on centralized data processing. Federated 

Learning (FL), a form of distributed learning, has become a popular solution for intelligent 

healthcare systems that involve IoMT devices. It allows for the collaborative training of global 

models while keeping private data secure from potential adversaries. 

FL is a decentralized approach to ML that enables models to be trained without the need to 

collect raw data in a central location. In this method, data remains on local devices such as 

smartphones or computers, and the model is trained directly on each device. Instead of sharing 

data, only updates to the model (weights and learning parameters) are synchronized with a 

central server [59]. 
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This approach is particularly beneficial in terms of privacy preservation and reducing data 

transmission costs, as sensitive data never leaves the local devices. FL is especially useful in 

applications involving smartphones, healthcare, and the Internet of Things (IoT), where data is 

dispersed and confidential. 

By leveraging FL, healthcare organizations can build more robust AI models that learn from a 

wider array of data sources while maintaining patient privacy. This decentralized framework also 

addresses data sovereignty concerns, as data can remain within its originating jurisdiction, 

complying with local regulations. 

Furthermore, FL can enhance model performance by aggregating knowledge from multiple local 

models, leading to a more generalized understanding of patterns and trends across diverse patient 

populations. As healthcare systems increasingly adopt IoMT devices, FL offers a scalable and 

privacy-preserving way to harness the power of data for better health outcomes [60]. 

5.7. Intrusion Detection Systems (IDS) 

Intrusion Detection Systems (IDS) are tools designed to monitor networks and computer systems 

for suspicious activities, cyberattacks, or security breaches. The primary goal of IDS is to detect 

and alert on unauthorized or suspicious activities, allowing for prevention of potential intrusions 

and threats. Innovative IDS, particularly those incorporating artificial intelligence techniques, are 

increasingly important in enhancing the cybersecurity of IoMT, especially given the advanced 

complexities of cyberattacks [61]. There are two main types of IDS: 

1.Signature-based IDS: These systems utilize a database of known attack patterns and 

signatures. If an activity matches one of these known signatures, the IDS generates an alert. 

While this type of system is effective for detecting known attacks, it struggles with identifying 

new or unknown threats. 

2. Anomaly-based IDS: This type of system monitors the normal behavior of a network or 

system and identifies any abnormal deviations from this behavior as potential threats. This 

method can detect new and unknown attacks, but it may also generate a higher number of false 

positives due to its reliance on deviations from established norms. 

6. Discussion 

As highlighted in the previous section, artificial intelligence significantly enhances the security 

of IoMT (Internet of Medical Things). However, despite the remarkable advancements, the 

integration of AI into IoMT necessitates a thorough reassessment of the underlying technologies 
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and their implementation. This integration is not as straightforward as its advancements might 

suggest. In this regard, there are limitations and challenges associated with the implementation of 

AI algorithms in IoMT devices that warrant comprehensive examination, including hardware 

implementation, quantum computing, training AI models, and various ethical concerns. 

One significant barrier to integrating AI into the IoMT ecosystem is the inadequacy of existing 

hardware. Effective implementation of AI algorithms requires high-performance computational 

capabilities and demands devices specifically designed for healthcare environments. Without the 

appropriate hardware infrastructure, the potential benefits of AI can be severely limited, 

hampering its effectiveness in real-time monitoring and decision-making processes. 

Another limitation involves the training of AI models in the context of IoMT. These models 

require large and accurate datasets, often constrained in healthcare due to privacy concerns. Such 

restrictions limit training data availability and raise ethical issues surrounding data collection, 

consent, and the use of sensitive patient information. This is particularly critical in the healthcare 

sector, where the stakes are high, and ethical standards must be upheld rigorously. 

Challenges in AI Integration 

6.1. Hardware implementation: 

In addition to the advantages offered by IoMT devices, such as reduced overall costs and 

efficient data exchange facilitated by 5G technologies, these devices also possess inherent 

limitations. Specifically, their cost-effective design imposes resource constraints, impacting 

computational capacity, memory allocation, and energy consumption. More specifically: 

1. Computational Capacity: DL and ML algorithms are inherently computationally 

expensive due to their reliance on multiplication and accumulation operations and non-

linear activation functions. This complexity makes their execution a challenging task, 

particularly as miniaturization of IoMT devices is crucial. 

2. Memory Allocation: As the complexity of AI algorithms increases, the number of 

trainable parameters also rises accordingly. Therefore, the available memory must have 

sufficient capacity to accommodate the large number of involved parameters. 

3. Energy Consumption: Given their computational demands, DL and ML algorithms 

consume significant amounts of energy, leading to reduced battery life in IoMT devices. 

This results in the need for frequent recharging and complementary use of energy 

harvesting techniques to extend their operational lifespan. 
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6.2. Quantum computing 

Quantum computing represents a type of computation based on the principles of quantum 

mechanics, a branch of physics that describes the behavior of particles at very small scales, such 

as atoms and photons. Unlike classical computers, which process information using bits (which 

can be either 0 or 1 at any moment), quantum computers use qubits that can simultaneously exist 

in both 0 and 1 states, a concept known as superposition [62]. 

Key Features of Quantum Computing: 

1. Superposition: A qubit can be in multiple states at the same time. This feature allows 

quantum computers to perform complex calculations simultaneously, significantly 

increasing their computational power. 

2. Entanglement: Qubits can become "entangled" so that the state of one qubit can 

instantaneously affect the state of another, regardless of the distance between them. This 

feature enables more efficient computations. 

3. Interference: Quantum computations use wave interference to enhance correct results 

while diminishing incorrect outcomes. 

The advantages of quantum computing include extremely high speeds in solving complex 

problems, such as factoring large numbers, simulating complex molecules, and optimizing at 

levels beyond classical computers' capabilities. However, quantum computing is still in the 

research and development phase, facing significant challenges in creating practical and stable 

quantum computers. 

This technology has widespread applications in areas such as cryptography, artificial 

intelligence, quantum chemistry, and optimization, and it could fundamentally change the 

landscape of technology and computing in the future. 

Quantum computing has the potential to significantly impact cybersecurity, both in terms of 

breaking existing cryptographic methods and providing new solutions for secure 

communications. Quantum computers could disrupt current encryption systems, necessitating the 

development of quantum-resistant algorithms. It is expected that quantum computing will 

transform cybersecurity and could potentially affect the security of medical devices and patient 

data in the context of IoMT. Thus, security measures for IoMT must evolve to stay ahead of the 

potential risks posed by quantum computing. The combination of ML with quantum computing 
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may yield tools that are not only more accurate and efficient but also more resilient against 

quantum attacks. 

The emerging field of Quantum ML (QML) utilizes quantum mechanics as defense mechanisms. 

While early results in this new area appear promising, there are still barriers to developing these 

quantum tools for practical and real-world applications. 

6.3. Training AI Models 

Training is one of the most critical aspects of AI models, especially when used in the context of 

IoMT. It is important to note that when environmental conditions or the features of IoMT devices 

change, AI models must be retrained and parameterized. Additionally, DL and ML algorithms 

trained on limited data may lead to overfitting, resulting in poor model performance. Given these 

considerations, healthcare professionals have raised concerns about the performance capabilities 

of AI models deployed in these devices. When AI algorithms receive incorrect IoMT data, they 

may produce inaccurate results, potentially harming patients. Moreover, it is notable that high 

false positive rates in diagnostic systems can generate misleading alerts for healthcare personnel. 

As a result, the trust of healthcare professionals in IoMT devices is contingent upon the accuracy 

and reliability of the embedded AI models, especially regarding clinical decision-support 

systems [63]. 

Accuracy ensures that AI can correctly identify real threats (true positives) and non-threats (true 

negatives), while precision indicates that the identified threats are relevant and do not include 

false positives. One potential solution for increasing trust among medical professionals is the use 

of Explainable AI (XAI). XAI may empower healthcare professionals to understand AI models 

and potentially trust them, enabling them to verify the proposed outcomes. For this purpose, 

glass-box models may provide interpretability of AI system processes by identifying potential 

vulnerabilities, thus facilitating the reduction of associated security risks and paving the way for 

a reliable IoMT environment. 

6.4. Ethics 

The integration of AI into IoMT raises significant ethical considerations, particularly regarding 

patient privacy, data integrity, and the potential for bias in decision-making processes. In our 

efforts to enhance the security of IoMT through AI, we must address these ethical challenges. 

The deployment of AI in IoMT should be thoroughly evaluated for its ethical implications. 
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Concerns such as data usage, algorithmic bias, and AI-driven decision-making arise prominently 

with the incorporation of AI into IoMT devices [64]. 

To realize the full potential of AI in healthcare in the near future, four key ethical issues must be 

addressed: (1) obtaining informed consent for data use, (2) ensuring safety and transparency, (3) 

addressing algorithmic fairness and bias, and (4) protecting privacy. Consequently, given the 

application of AI in high-stakes areas like healthcare, the confidentiality of processed data is of 

primary importance, emphasizing the need for the development and governance of AI systems 

that are responsible, fair, and transparent. 

7. Conclusion 

IoMT (Internet of Medical Things) represents a transformative paradigm in healthcare, with the 

potential to revolutionize patient care, diagnosis, and treatment. However, the expansion of 

IoMT devices brings significant security and privacy challenges. Motivated by the promising 

potential of AI-related technologies, this work investigates the implementation of AI methods to 

mitigate cybersecurity challenges and enhance the security and privacy of IoMT. 

Recent research indicates a substantial increase in interest in the literature concerning IoMT 

security. In this context, we systematically gathered and classified extensive research in this 

field. Our comprehensive review highlights that integrating ML and DL techniques can 

significantly improve the cybersecurity of IoMT. This improvement could be beneficial for 

enhancing the security and privacy of IoMT devices. 

Furthermore, considering the numerous advantages of AI technologies, we provide a systematic 

overview of the current scientific trends in this emerging field, in contrast to their primary 

cybersecurity counterparts. The promising potential of AI-based cybersecurity in the IoMT 

landscape is expected to play a crucial role in protecting patient data, ultimately fostering a new 

era of personalized and data-driven healthcare. 

By addressing the security and privacy concerns associated with IoMT, AI can safeguard 

sensitive patient information and enhance the overall effectiveness of healthcare delivery 

systems. The ongoing evolution of AI methodologies offers a hopeful outlook for the future of 

healthcare, where technology and patient care can merge to create safer, more efficient 

environments for providers and patients. 
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