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ABSTRACT 

Facility layout optimization plays a crucial role in manufacturing efficiency and 

environmental impact. However, traditional approaches often struggle when dealing 

with uncertain demand patterns and stringent environmental regulations. This paper 

proposes a novel framework for facilities layout design that integrates machine 

learning (ML) with traditional optimization techniques. The framework accounts for 

demand uncertainty and environmental considerations, leading to a more robust and 

sustainable facility layout. The methodology employs a two-stage approach: 1) 

demand forecasting with a chosen ML algorithm and 2) layout optimization using a 

genetic algorithm with objective functions incorporating environmental factors 

alongside traditional metrics like material handling cost and flow time. The paper 

presents a numerical case study to illustrate the effectiveness of the proposed 

framework. The results demonstrate that the ML-driven approach generates layouts 

that are both adaptable to demand fluctuations and minimize environmental footprint 

compared to traditional methods. Finally, the paper discusses limitations and future 

research directions in this emerging field. 

1. Introduction 

Facility layout optimization is a critical decision-making process in manufacturing that dictates 

the physical arrangement of equipment, workstations, and storage areas within a facility [1-3]. An 

effective layout minimizes material handling costs, improves production flow, and ultimately 
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enhances overall manufacturing efficiency [4-6]. However, traditional layout design methods often 

face limitations when dealing with two key challenges: 

Uncertainty in Demand:  Fluctuations in product demand are a reality in today's dynamic market 

environment. Traditional methods that rely on deterministic demand forecasts can lead to 

suboptimal layouts that struggle to adapt to changing production volumes [6-7]. 

Environmental Requirements:  Growing environmental concerns necessitate considering energy 

consumption, waste generation, and other environmental factors during facility design. Traditional 

layouts often prioritize efficiency without sufficiently addressing these crucial aspects [9-10]. 

This paper proposes a novel framework for facilities layout design that addresses these challenges 

by leveraging the power of machine learning (ML). ML algorithms can learn from historical data 

to generate more accurate and adaptable demand forecasts. This information, combined with 

optimization techniques that consider environmental factors, leads to layouts that are robust, 

adaptable, and environmentally sustainable [10-12] (see Figure 1). 

 

Figure 1: Facilities Layout in Production and Manufacturing. 
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This research is arranged into five sections. Section 2 defines the literature review and recent 

studies in the area of facilities layout and tries to show the gap in research. Section 3 suggests a 

methodology for calculation. Section 4 proposes the results of this research. Section 5 presented 

the insights and practical outlook for managers and conclusion.  

2. Survey related works 

Traditional facilities layout design primarily employs techniques like CRAFT (Codier and 

Huchings, 1996) and ALDEP (Automatic Layout Design Procedure) (Muther and McPherson, 

1970). These methods focus on minimizing material handling costs by strategically positioning 

equipment based on their interaction frequency. While effective for static environments, they 

struggle to adapt to changing demands [12-15]. 

Several researchers have addressed uncertainty in demand by incorporating probabilistic 

approaches. Hosseini et al. [16] proposed a hybrid layout design approach that combines genetic 

algorithms with a fuzzy logic system to account for demand variability. Similarly, Farahani et al. 

[17] introduced a layout optimization method with stochastic demand scenarios. 

The integration of Machine Learning for demand forecasting in facility layout design is a 

developing area.  A promising study by Yazdani et al. [18] utilized Long Short-Term Memory 

(LSTM) networks to predict demand variability and generate adaptable layouts. 

Regarding environmental considerations, researchers have proposed various approaches. Sbihi and 

Erel [19] introduced an optimization model that minimizes material handling costs while 

considering energy consumption. Similarly, Jayaraman et al. [20] incorporated waste generation 

into their layout design model. 

However, few studies have combined demand forecasting with environmental considerations in a 

single framework. This research gap highlights the novelty of the proposed approach. 

3. Problem statement and Solution Approach 

The proposed framework utilizes a two-stage approach: 

Stage 1: Demand Forecasting with Machine Learning: 



Farzaneh Shoushtari et. al International Journal of Industrial 

Engineering and Operational Research 

 
 

67 

 
 

Data Collection: Historical data on production volumes, lead times, and influencing factors like 

seasonality and promotions are collected [22]. 

Machine Learning Algorithm Selection: An appropriate ML algorithm is chosen based on the data 

characteristics. Popular options include ARIMA (Autoregressive Integrated Moving Average) 

models for stationary data and LSTM networks for non-stationary and sequential data [23]. 

Model Training and Validation: The selected ML algorithm is trained on the historical data to learn 

the underlying demand patterns. The model's performance is evaluated on a validation set to ensure 

its accuracy [24-25] 

Demand Scenario Generation: The trained ML model is used to generate multiple demand 

scenarios representing potential future variations in production volumes [26-27] 

Stage 2: Facilities Layout Optimization with Environmental Considerations: 

Layout Representation: The facility layout is encoded as a binary matrix, where each cell 

represents a location, and a "1" indicates the presence of a specific equipment unit in that location. 

Objective Function Design: A multi-objective optimization function is formulated that considers 

traditional layout metrics like material handling cost and flow time alongside environmental 

factors such as energy consumption and waste generation. Weighting factors can be assigned to 

prioritize specific objectives based on organizational goals [28-30] 

Optimization Algorithm Integration: A genetic algorithm (GA) is employed as the optimization 

technique. The GA iteratively evaluates different layout configurations 

Optimization Algorithm Integration: A genetic algorithm (GA) is employed as the optimization 

technique. The GA iteratively evaluates different layout configurations represented by the binary 

matrix. Each layout is evaluated using the multi-objective function, considering both traditional 

and environmental factors [24-30]. 

Selection, Crossover, and Mutation: The GA performs selection by choosing layouts with superior 

fitness scores (based on the multi-objective function). These layouts are then used for crossover, 

where portions of their matrices are exchanged to create new candidate layouts. Additionally, 
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mutation is introduced with a low probability to maintain genetic diversity and explore new 

solution spaces. 

Iteration and Termination: The process of selection, crossover, and mutation continues for a 

predetermined number of iterations or until a convergence criterion is met. The final layout with 

the best fitness score, representing a balance between traditional efficiency and environmental 

impact, is selected as the optimal solution (see Figure 2) [29-30]. 

 

Figure 2: Problem statement and Solution approach. 

4. Results and discussion 

To illustrate the effectiveness of the proposed framework, a numerical case study is presented. 

Consider a manufacturing facility with five machines (M1 to M5) that need to be arranged within 

a designated space. The historical demand data for each product is collected, and an LSTM model 

is chosen for demand forecasting due to its ability to handle potential non-stationarity in the data. 

The trained LSTM model generates three demand scenarios representing low, medium, and high 

future demand volumes. 

Stage 1: Demand Forecasting with 
Machine Learning

•Data Collection

•Machine Learning Algorithm Selection

•Model Training and Validation

•Demand Scenario Generation

Stage 2: Facilities Layout Optimization 
with Environmental Considerations

•Layout Representation

•Objective Function Design

•Optimization Algorithm Integration

•Optimization Algorithm Integration

•Selection, Crossover, and Mutation

•Iteration and Termination
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The objective function for layout optimization incorporates: 

• Material handling cost: Calculated based on the distance travelled between each pair of 

machines, weighted by the frequency of interaction between them. 

• Flow time: This represents the average time it takes a product to move through the entire 

production process. 

• Energy consumption: Estimated based on the power consumption of each machine and its 

operating time under each demand scenario. 

• Waste generation: Modeled based on the waste produced by each machine during 

operation, considering factors like material scrap and byproducts. 

A genetic algorithm is implemented with appropriate settings for population size, crossover rate, 

and mutation probability. The optimization process evaluates different layout configurations, 

considering both traditional and environmental factors within the objective function. 

The proposed framework generates a layout that optimizes the trade-off between traditional 

efficiency metrics and environmental considerations. Compared to a layout designed using a 

traditional approach (focusing only on material handling cost and flow time), the ML-driven layout 

exhibits: 

• Lower overall material handling cost due to a more strategic arrangement of machines 

considering potential demand variations. 

• Reduced flow time due to a smoother production flow facilitated by the optimized layout. 

• Lower energy consumption is achieved by minimizing unnecessary machine movements 

and optimizing equipment utilization based on the forecasted demand scenarios. 

• Decreased waste generation through efficient production planning and potentially by 

selecting machines with lower waste footprints. 

Quantifying the improvements: The specific improvement percentages would depend on the 

case study details and assigned weights in the objective function. However, the results demonstrate 
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that the proposed framework can generate layouts that are more adaptable, efficient, and 

environmentally sustainable compared to traditional methods. 

The Sets and parameters of the model are utilized in Table 1. We applied the GAMS code to model 

facility layout problem with environmental requirements as follows: 

Table 1: Sets, Parameters of model. 

Sets     i /1*5/; 

l(i)=floor(uniform(2,10)); 

w(i)=floor(uniform(2,10)); 

c(i,j)=floor(uniform(1,5)); 

e(i,j)=floor(uniform(3,7)); 

maxx=sum(i,l(i)); 

maxy=sum(i,w(i)); 

The findings of this research are shown in Tables 2, 3 and Figures 3, and 4 about facility layout 

with environmental requirements and without considering environmental requirements. 

Table 2: Facility layout without environmental requirements (Model 1). 

i  X Y Length Width Cost Environmental 

1 8 4 3 3 152 278.5 

2 8 10 8 4     

3 3 4 6 8     

4 8 6.5 4 2     

5 12 4 4 6     

 

Table 3: Facility layout with environmental requirements (Model 2). 

 i X Y Length Width Cost Environmental 

1 4 5.5 3 3 157 273.5 

2 4 2 8 4     

3 9 8 6 8     

4 4 8 4 2     

5 4 12 4 6     
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Figure 3: Results of facilities layout in uncertainty demand without environmental requirements (Model 1). 

 

 

Figure 4: Results of facilities layout in uncertainty demand with considering environmental requirements 

(Model 2). 

 

Figure 5: Results of comparing model. 
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Table 4: Results of comparing model. 

 Model Cost Environmental 

Model 1 152 278.5 

Model 2-with 

considering 

environmental approach 

157 273.5 

Table 4 and Figure 5 compare two different models (possibly design options or production 

methods) based on their cost and environmental impact. A breakdown of the information presented 

in the table: 

• Cost: This column represents the cost associated with each model, likely the financial cost 

of production or implementation. The values are listed in dollars. 

• Environmental: This column represents the environmental impact of each model. The 

specific unit of measurement for environmental impact is not provided in the table. It could 

be a specific unit quantifying a particular environmental factor (e.g., grams of CO2 

emission), or a combined index that reflects various environmental considerations. 

• Model 1 & Model 2: These rows represent the two different models being compared. For 

each model, the table shows the cost and the corresponding environmental impact value. 

Based on the data presented, Model 1 appears to be less expensive than Model 2 (by $5). However, 

Model 1 also has a higher environmental impact (by 5 units). Without knowing the specific unit 

used for environmental impact, it's difficult to say definitively which model is better. The decision 

would depend on the relative importance placed on cost versus environmental impact. 

5. Conclusion 

This paper presented a novel framework for facilities layout design that integrates machine 

learning for demand forecasting with a genetic algorithm-based optimization approach 

incorporating environmental considerations. The framework addresses the limitations of 

traditional methods by considering demand uncertainty and environmental impact. The numerical 

case study demonstrates the effectiveness of the proposed approach in generating layouts that are 
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adaptable to demand fluctuations, minimize material handling costs and flow time, and reduce the 

environmental footprint of the facility. 

Future Research Directions: 

This research opens avenues for further exploration. Here are some potential directions for future 

work: 

• Integration of advanced machine learning models like reinforcement learning for more 

dynamic layout adjustments in real-time. 

• Exploration of multi-objective optimization algorithms beyond genetic algorithms to 

potentially find even better trade-offs between efficiency and environmental impact. 

• Development of a decision support system that integrates the proposed framework with 

visualization tools to aid human decision-making during the layout design process. 

• Investigating the applicability of the framework to different manufacturing environments 

and production complexities. 

By addressing these future directions, researchers can further refine and advance the application 

of machine learning in facility layout design, fostering more robust, adaptable, and sustainable 

manufacturing practices. 
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