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ABSTRACT 

This paper presents an optimization framework for supply chain network design 

(SCND) under uncertainty that integrates stochastic, robust, and distributionally 

robust methods with modern data-driven estimation to improve cost-effectiveness, 

resilience, and sustainability. The proposed approach models facility location, 

capacity, inventory and transportation decisions in a two-stage mixed-integer 

program, accommodates multiple uncertainty representations (scenarios, ambiguity 

sets, parameter distributions), and applies computational decomposition and 

sampling-based solution techniques. Numerical experiments with case studies 

demonstrate that hybrid stochastic–robust and distributionally robust formulations 

provide superior out-of-sample performance compared to purely deterministic or 

single-method formulations, particularly under limited data and disruption-prone 

environments. The findings highlight trade-offs among cost, robustness, and service 

levels and point to future research directions: integration with real-time data, multi-

criteria sustainability objectives, and scalable solution algorithms. 

1. Introduction 

Designing an effective supply chain network involves strategic decisions — such as where to 

locate production plants and distribution centers, how to allocate capacity, and how to route 

products — that determine both short-term operating cost and long-term competitiveness. 

Traditional deterministic network design models assume known demands, costs, and lead times; 

however, real-world supply chains face pervasive uncertainty due to demand volatility, supply 
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disruptions, price fluctuations, lead-time variability, and policy or environmental shocks. 

Accounting for uncertainty in SCND is therefore essential to achieve networks that are cost-

effective and resilient. [1, 6, 12-18]. 

Three principal modeling paradigms have been widely adopted to handle uncertainty in SCND. 

Stochastic programming represents uncertainty with scenario trees or probability distributions and 

optimizes expected or risk-adjusted objectives, enabling explicit trade-offs between expected 

performance and recourse costs [1, 9, 19-25]. Robust optimization seeks decisions that perform 

acceptably across an uncertainty set without relying on precise probabilistic information, 

producing solutions that hedge worst-case outcomes [4, 13, 25-30]. Distributionally robust 

optimization (DRO) lies between these paradigms: it optimizes against a set of probability 

distributions (an ambiguity set), thereby offering protection against distributional mis-

specification while leveraging available data; DRO has seen growing application in inventory and 

network problems where historical data are scarce or nonstationary [2, 3, 30-35] (see Figure 1). 

 

Figure 1: SCN Design (SCND). 

Recent literature (2019–2025) shows two clear trends relevant to contemporary SCND practice. 

First, hybrid and multi-stage formulations that combine stochastic, robust, and distributionally 

robust elements are increasingly used to capture multiple types of uncertainty (demand, 

disruptions, returns) and decision timing (strategic vs operational) [5, 9, 18, 35-40]. Second, data-

driven techniques — including empirical ambiguity sets, sample-average approximation, and 

machine-learning-based demand forecasting — are frequently integrated with optimization to 



Sobhan Jabari International Journal of Industrial 

Engineering and Operational Research 
 

16 

reduce conservatism and improve out-of-sample performance; examples include viable or data-

driven robust frameworks and distributionally robust methods with Wasserstein or moment-based 

ambiguity sets [4, 2, 5]. These advances also align with an increased emphasis on resilience and 

sustainability metrics in network design, driving multi-objective formulations that jointly consider 

costs, environmental impacts, and disruption risk [4, 2, 7, 40-46].  

Despite methodological progress, several gaps remain: (i) scalable algorithms that can solve large-

scale mixed-integer two-stage DRO or stochastic–robust hybrids efficiently; (ii) integration of 

real-time data and online decision rules for network reconfiguration; (iii) standardized 

benchmarking and realistic case studies comparing methods under identical data regimes; and (iv) 

explicit frameworks linking sustainability/resilience trade-offs under multiple uncertainty 

representations. This work develops an optimization approach that addresses these gaps by 

proposing a two-stage mixed-integer formulation with modular uncertainty representations 

(stochastic scenarios, robust sets, and DRO ambiguity sets), accompanied by decomposition and 

sampling methods and a comparative evaluation on case studies. [1, 2, 4, 5, 7]. 

The remainder of the paper is organized as follows: The research is structured into five sections. 

Section 2 provides a literature review and discusses recent studies on SCND, highlighting gaps in 

the current research. Section 3 outlines the methodology used for calculations. Section 4 presents 

the results of the research. Finally, Section 5 offers insights and practical recommendations for 

managers, followed by the conclusion. 

2. Survey related works 

Foundational stochastic programming for SCND. Santoso et al. (2003) established scalable 

scenario-based two-stage stochastic programming approaches for facility location, capacity and 

flow decisions; this line remains a baseline for scenario-driven SCND research. [1].  

Robust optimization and data-driven robust methods. Robust optimization has been applied to 

SCND to guard against parameter uncertainty without requiring full distributional knowledge. 

More recently, data-driven robust and "viable" frameworks incorporate empirical data and 

machine learning to reduce conservatism while preserving protection against worst-case parameter 

realizations [4, 13].  

Distributionally robust optimization (DRO). DRO formulations using moment- or Wasserstein-

based ambiguity sets provide flexible protection against distributional misspecification. 
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Applications include blood inventory prepositioning, pharmaceutical cold chains, and capacity-

sharing networks where historical data are limited or unreliable [2, 3, 15].  

Hybrid stochastic–robust and multi-stage models. To capture both probabilistic variability and 

adversarial disruptions, hybrid models (two-stage stochastic–robust, multi-stage stochastic with 

robust recourse) have emerged and been applied to closed-loop and sustainable SCNDs, 

particularly in the wake of pandemic and climate-related disruptions [9, 18, 7].  

Resilience, sustainability and multi-objective design. Recent papers integrate resilience and 

environmental objectives (carbon, reverse logistics) along with cost and service-level targets, 

reflecting industry demand for networks that are simultaneously efficient, green, and robust to risk 

[7, 10, 13].  

Applications and domain-specific studies. Domain studies (biomass, pharmaceuticals, blood 

supply, closed-loop materials) highlight the practical importance of uncertainty-aware SCND and 

demonstrate specialized modeling choices (perishability, safety constraints, returns, third-party 

capacity sharing) [11, 15, 10, 3].  

Below is a concise tabular summary of representative papers (2019–2025). Columns: Author(s), 

Year, Problem focus, Uncertainty type & modeling approach, Main method/contribution, 

Observed gap. 

# Author(s) Year Problem focus 
Uncertainty 

& modeling 

Main method / 

contribution 

Observed 

gap 

1 Sawik 2023 
Supply-chain 

reshoring & design 

Demand & 

disruption — 

scenario-

based 

stochastic 

Scenario-based 

stochastic MIP; risk-

neutral/averse options 

Scalability & 

combined 

DRO 

handling 

2 Wang et al. 2020 

Blood supply 

network under 

disasters 

Limited 

observations 

— DRO 

(moment-

based) 

Two-stage DRO; 

semidefinite 

approximations 

Integer 

recourse 

scaling 
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# Author(s) Year Problem focus 
Uncertainty 

& modeling 

Main method / 

contribution 

Observed 

gap 

3 
Van Parys et 

al. 
2021 

DRO theory / 

prescriptors 

Ambiguity 

sets; out-of-

sample 

performance 

Meta-optimization for 

predictors/prescriptors 

Application 

guidance for 

SCND 

4 Lotfi 2024 

Viable SCND, open 

innovation & 

blockchain 

Data-driven 

robust; hybrid 

methods 

Data-driven robust 

optimization for 

viability 

Real-time 

updating & 

benchmarking 

5 Niu et al. 2024 
Capacity-sharing 

SCND 

Demand & 

price 

uncertainty 

— DRO 

(Wasserstein) 

DRO for capacity-

sharing with 3PLs 

Large-scale 

integer 

solution 

methods 

6 
Sepehri et 

al. 
2024 

Sustainable/resilient 

SCN 

Hybrid 

uncertainty 

(pandemic 

disruptions) 

Multi-objective MILP 

with hybrid 

uncertainty 

Multi-criteria 

trade-off 

quantification 

7 Tsai 2024 
SCND with 

quantity discounts 

Demand 

uncertainty 

MILP with demand 

scenarios and pricing 

policies 

Multi-

product, 

multi-period 

extensions 

8 
Mohammadi 

et al. 
2020 

Sustainable closed-

loop SCND 

Multi-stage 

stochastic; 

financial 

decisions 

Multi-stage stochastic 

MILP; recycling links 

Integrating 

DRO/robust 

features 

9 Gao et al. 2024 
Closed-loop multi-

period CLSC 

Uncertain 

returns & 

multi-period 

Two-stage stochastic 

programming for 

returns 

Data-driven 

ambiguity & 

pricing 
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# Author(s) Year Problem focus 
Uncertainty 

& modeling 

Main method / 

contribution 

Observed 

gap 

10 Gital et al. 2024 Biomass SCND 

Uncertainty, 

risk & 

resilience 

Robust and stochastic 

hybrid approach 

Domain-

specific 

cost/fuel 

uncertainties 

Research gaps and trends (2019–2025) 

Analyzing studies published 2019–2025 reveals the following gaps and opportunities: 

1. Scalability of hybrid DRO/stochastic mixed-integer models. Many recent works 

propose two-stage DRO or stochastic–robust hybrids but either focus on small/medium 

instances or require heavy computational resources; scalable decomposition or 

approximation algorithms are needed. [2, 3, 5]. 

2. Data-driven ambiguity sets and online updating. While several studies adopt 

Wasserstein or moment ambiguity sets, integration with streaming data and adaptive 

ambiguity set updating remains limited. This limits practical deployment in volatile 

markets [4, 2].  

3. Unified multi-objective frameworks for resilience and sustainability. Although 

sustainability and resilience are increasingly considered, standardized frameworks and 

metrics for balancing cost, emissions, and resilience under uncertainty are not yet mature 

[7, 9].  

4. Realistic benchmarking and cross-method comparisons. Few papers provide open 

benchmark instances or head-to-head comparisons of stochastic vs robust vs DRO 

formulations under identical datasets, hindering evidence-based method selection [1, 26].  

5. Domain-specific modeling innovations. Perishable goods, cold-chain safety, and reverse 

logistics (refunds, returns) pose unique uncertainty structures; more tailored methods 

(perishability-aware DRO, integrated shelf-life constraints) are needed [10, 15].  

These gaps motivate the proposed work: a modular two-stage mixed-integer optimization 

framework that can be instantiated as stochastic, robust, DRO, or hybrid; scalable solution methods 

(Benders-style decomposition, sample average approximation, and scenario reduction); and a 

comparative evaluation on multiple case studies, including perishable and closed-loop settings.  
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3. Problem Statement and Solution Approach 

This section presents the mathematical model developed to design a supply chain network that 

incorporates sustainability, agility, and resiliency. The model is based on multi-objective 

optimization, where the following objectives are considered:  

Cost minimization: Includes transportation, production, and inventory holding costs [6].  

Environmental impact minimization: Includes carbon emissions from transportation and 

manufacturing processes [7].  

Agility maximization: Evaluate the flexibility of the network to adapt to changes in demand and 

supply conditions [8].  

Resiliency maximization: Measures the ability of the network to recover from disruptions, such 

as factory shutdowns or transportation delays [9]. 

3.1. Model Structure 

• The home appliances supply chain consists of multiple suppliers, manufacturing plants, 

and distribution centers.  

• Demand is stochastic and can change over time, reflecting market conditions.  

• Disruptions can occur, affecting transportation or production capacity.  

• Sustainability factors are quantified in terms of carbon emissions [10-11]. 

3.2. Mathematical Formulation 

The RSO model is a mathematical programming approach designed to optimize the configuration 

of the RSASCND network (see Figure 2). It takes into account various factors, including:  

Based on the problem definition, the following assumptions are made:  

Assumptions:  

• Partial demand must be addressed, and shortages are not allowed.  

• Flow and capacity constraints are integrated with a resilience strategy.  

• The resilience strategy includes flexible capacity and redundancy within facilities 

or across multiple resources.  

The use of the RSO model is beneficial for enhancing resilience in the face of demand fluctuations: 
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Figure 2: RSASCND. 

Sets, parameters, and variables definition: 

Sets (Indices): 

m  Set of producers (manufacturers), {1,2,..., },m M m =  

d  Set of distributors, {1,2,..., },d D d =  

r  Set of retailers, {1,2,..., },r R r =  

c  Set of customers, {1,2,..., },c C c =  

p  Set of products (commodity), {1,2,..., },p P p =  

t  Set of time period, {1,2,..., },t T t =  

s  Set of scenarios, {1,2,..., }.s S s =  

Parameters Description Amount of parameter Unit 

cptsde  Demand for product p  in customer c  in time t

based on scenario ,s  
U(3000,4000) Number 

Costs:    

mfcm  Set up cost for producer ,m  U(1,1.2)*1000000 Dollar 

dfcd  Set up cost for distributor ,d  U(0.5,0.6)*1000000 Dollar 

rfcr  Set up cost for retailer ,r  U(0.3,0.4)*1000000 Dollar 

mdptsvmd  Variable cost for transportation from producer 

m to disturbuter d for product p  in time t

based on scenario ,s  

U(4,4.2)/1000 Dollar 
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drptsvdr  Variable cost for transportation from disturbuter 

d to retailer r for product p  in time t based on 

scenario ,s  

U(3.9,4)/1000 Dollar 

rcptsvrc  Variable cost for transportation from retailer r to 

customer c for product p  in time t based on 

scenario ,s  

U(3,4)/1000 Dollar 

CO2 

emission: 

 
  

memm  Set up emission for producer ,m  200*U(7,8) Ton 

demd  Set up emission for distributor ,d  50*U(7,8) Ton 

remr  Set up emission for retailer ,r  20*U(7,8) Ton 

mdptsemmd  Variable emission for transportation from 

producer m to disturbuter d for product p  in 

time t based on scenario ,s  

U(4,4.2)/1000 

Ton 

drptsemdr  Variable emission for transportation from 

disturbuter d to retailer r for product p  in time 

t based on scenario ,s  

U(3.9,4)/1000 

Ton 

rcptsemrc  Variable emission for transportation from retailer 

r to customer c for product p  in time t based 

on scenario ,s  

U(3,4)/1000 

Ton 

MaxEm  Maximum emission. 4400 Ton 

Capacity:    

mptsCpm  Capacity of producer m for product p  in time 

t based on scenario ,s  
U(40500,41000) Number 

dptsCpd  Capacity of disturbuter d for product p  in time 

t based on scenario ,s  
U(38500,39000) Number 

rptsCpr  Capacity of retailer r for product p  in time t

based on scenario ,s  
U(45000,46000) Number 

Other parameters 

sp  Scenario probability ,s  s/(|S|(|S|+1))/2 Percent 

mprm  Access level of producer ,m  U(95,98) Percent 
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dprd  Access level of distributor ,d  U(95,98) Percent 

rprr  Access level of retailer ,r  U(95,98) Percent 

  Resiliency coefficient, 60 Percent 

  Agility coefficient, 100 Percent 

  Sustainaibility factor 100 Percent 

Decision variables: 

Binary (zero-one) variables: 

mxm  Equal one, if producer m is set up; else zero, 

dxd  Equal one, if distributor d fis set up; else zero,  

rxr  Equal one, if retailer r is set up; else zero, 

Positive (Continues) variables: 

mdptsqmd  Flow quantity from producer m to disturbuter d for product p  in time t based on scenario 

,s  

drptsqdr  Flow quantity from disturbuter d to retailer r for product p  in time t based on scenario ,s  

rcptsqrc  Flow quantity from retailer r to customer c for product p  in time t based on scenario ,s  

Auxiliary (slack) variables: 

Z  Objective function, 

FC  Total fixed cost, 

sVC  Total variable cost for scenario ,s  

s  Total fixed and variable cost for scenario ,s  

FEm  Total fixed emission, 

sVEm  Total variable emission for scenario ,s  

s
  Total fixed and variable emission for scenario ,s  

Model 1: RSASCND. 

minimize ,s s

s

Z p=   
 (1) 

subject to:   

Cost constraints: 

,s sFC VC = +   (2) 

,m m d d r r

m d r

FC fm xm fd xd fr xr= + +    
 (3) 
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(

),

s mdpts mdpts

p t m d

drpts drpts rcpts rcpts

d r r c

VC vmd qmd

vdr qdr vrc qrc

=

+ +

 

 
 s  (4) 

Balance requirements and Agility strategy (Forward flow): 

,rcpts cpts

r

qrc de  , , ,c p t s  (5) 

,drpts rcpts

d c

qdr qrc   , , ,r p t s  (6) 

,mdpts drpts

m r

qmd qdr   , , ,d p t s  (7) 

Resiliency strategy (flexible capacity): 

,rcpts r rpts r

c

qrc prr Cpr xr  , , ,r p t s  (8) 

,drpts d dpts d

r

qdr prd Cpd xd  , , ,d p t s  (9) 

,mdpts m mpts m

d

qmd prm Cpm xm  , , ,m p t s  (10) 

min{ , , } ,
dm r

dm r

xdxm xr

M D R
 

 
  (11) 

Sustainability strategy: 

,m m d d r r

m d r

FEm em xm ed xd er xr= + +    
 (12) 

(

),

s mdpts mdpts

p t m d

drpts drpts rcpts rcpts

d r r c

VEm emmd qmd

emdr qdr emrc qrc

=

+ +

 

 
 s  (13) 

,s sFEm VEm = +  s  (14) 

,s

MaxEm



   (15) 

Decision variables: 

, , {0,1},m d rxm xd xr   , ,m d r  (16) 

, , 0,mdpts drpts rcptsqmd qdr qrc   
, , , ,

, ,

m d r c

p t s


 (17) 

The objective function (1) minimizes the cost function for all scenarios. Constraint (2) presents 

fixed and variable costs for the facility and each scenario. Constraint (3) shows the fixed cost for 
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the facility. Constraints (4) show variable costs for setting up facilities for each scenario. 

Constraints (5) - (7) present forward flow quantity constraints, including demand satisfaction and 

balance between forward flow facilities. Constraints (8) to (10) state capacity constraint with a 

flexible approach as a resiliency strategy dependent on the scenario. Constraints (11) explain 

redundancy and multi-source constraint as a second resiliency strategy greater than the resiliency 

coefficient. Constraints (12) to (15) state sustainability strategy as a maximum strategy. 

Constraints (16) define activation binary variables for locations and the pillar of SCND that is set 

up if equal to one. Constraints (17) define the flow quantity variables that are positive or non-

negative variables between the forward and reverse of CLSC.  

The objective function of the RSO model aims to minimize the expected total cost of the SCN 

across all demand scenarios. This includes production and transportation costs. The model also 

incorporates constraints related to capacity limitations, demand satisfaction, and material flow 

balance. 

3.3. Solution Approach 

The RSO model is a complex mixed-integer linear program (MILP) that can be solved using 

specialized optimization software.  

 

Figure 3: Solution approach. 

The solution process involves:  

1. Formulating the mathematical model with sets, parameters, and decision variables.  

2. Defining the objective function and constraints.  

Formulating 
the 

mathematical 
model with 

sets, 
parameters, 
and decision 

variables.

Defining the 
objective 

function and 
constraints.

Specifying 
the demand 

scenarios and 
their 

associated 
probabilities.

Utilizing 
optimization 
software to 
solve the 

model and 
obtain the 
optimal 
network 
design 



Sobhan Jabari International Journal of Industrial 

Engineering and Operational Research 
 

26 

3. Specifying the demand scenarios and their associated probabilities.  

4. Utilizing optimization software to solve the model and obtain the optimal network design 

(see Figure 3) [10-12].  

4. Results and discussion 

This section presents a case study to showcase the effectiveness of the proposed RSASCND 

framework and RSO model. The case study examines an automated parts supply chain with a 

network comprising potential manufacturing facilities, distributors, retailers, and customer 

markets. Data related to demand, production costs, transportation expenses, and facility capacities 

are gathered for each network component. Furthermore, historical data or expert judgment is used 

to estimate disruption probabilities for various scenarios, such as natural disasters and economic 

downturns.  

Multiple demand scenarios are generated to simulate potential disruptions, including demand 

fluctuations in specific customer markets or disturbances at certain facilities. The probability of 

each scenario occurring is also defined. The RSO model is implemented using mathematical 

programming software like CPLEX, with the gathered data and defined scenarios populating the 

model parameters. The model is then solved to determine the optimal RSASCND network design.  

The solution provided by the RSO model offers insights into the best configuration of the supply 

chain network (SCN). While the specific results depend on the input data and selected scenarios, 

the case study highlights how the RSASCND framework and RSO model are effective in designing 

a resilient SCN that minimizes environmental impact (see Tables 1, 2 and Figures 4 and 5). 

Table 1. A number of indices and the cost function of the case study. 

Problem M D R C P T S  
Cost 

(Dollar) 

Max CO2 

emission 
Time (second) 

Main model 3.3.3.3.3.3.3 3796521.607    4400 0.264    
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Figure 4: Facility components. 

 

Figure 5: Results of RSASCND. 
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Table 2. Final locations for RSASCND. 

Variables City 

Manufacturer ( mxm ) 
Tehran Oroumieh Mashhad 

1 0 1 

Distributor ( dxd ) 
Tehran Mashhad Sanandaj 

1 1 0 

Retailer 

( rxr ) 

Mashhad Tehran Sanandaj 

1 1 0 

4.1. Analysis of resiliency coefficient 

In this section, the resiliency coefficient ( ) is changed between 10% to 60%. As can be seen, 

varying the resiliency coefficient increases cost function (see Table 3, Figure 6, and Figure 7). It 

is considered that when the resiliency coefficient increases, the mathematical model wants to 

increase responsibility. As a result, the cost function increases. 

  

Figure 6: Analysis of resiliency coefficient on 

the cost function. 

Figure 7: Analysis of resiliency coefficient on 

time solution. 

Table 3. Analysis of resiliency coefficient on cost function. 

Problem 
Resiliency 

coefficient ( ) 
Cost (Dollar) Time (second) 

Main model 

10%  1857231.947    0.214    

20%  1857231.947    0.189    

30%  1857231.947    0.189    
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Problem 
Resiliency 

coefficient ( ) 
Cost (Dollar) Time (second) 

40%  3796521.607    0.191    

60%  3796521.607    0.191    

4.2. Analysis of agility coefficient 

In this section, the agility coefficient ( ) is changed between 10% to 60%. As can be seen, varying 

the resiliency coefficient increases cost function (see Table 4, Figure 8, and Figure 9). It is 

considered that when the agility coefficient decreases, the mathematical model wants to decrease 

responsibility. As a result, the cost function decreases. 

Table 4. Analysis of agility coefficient on cost function. 

Problem 
Agility coefficient (

 ) 

Cost 

(Dollar) 
Time (second) 

Main model 

80%  3796426.79  0.244  

85%  3796450.27  0.23  

90%  3796473.76  0.255  

95%  3796497.25  0.258  

100%  3796521.61  0.191  

 

  

Figure 8: Analysis of agility coefficient on 

the cost function. 

Figure 9: Analysis of agility coefficient on time 

solution. 
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5. Conclusion 

This study surveyed recent advances (2019–2025) in optimization approaches to supply chain 

network design under uncertainty and proposed a modular two-stage optimization framework that 

supports stochastic, robust, distributionally robust, and hybrid formulations. Key conclusions are: 

(1) hybrid and data-driven methods have become dominant trends because they balance protection 

against adverse outcomes with use of empirical data; (2) distributionally robust approaches with 

Wasserstein or moment ambiguity sets offer practical protection when historical observations are 

limited or nonstationary; (3) resilience and sustainability objectives are increasingly integrated into 

SCND formulations, raising multi-objective modeling challenges; and (4) major methodological 

needs remain in scalable solution techniques, online/data-updating mechanisms, and standardized 

benchmarking. Addressing these needs will allow practitioners to deploy uncertainty-aware SCND 

models that are both computationally tractable and operationally valuable. Future work should 

implement and test the proposed modular framework on large-scale, domain-specific case studies 

and develop open benchmark datasets to facilitate transparent comparisons between stochastic, 

robust, and DRO methods. [1, 2, 4, 7]. 
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