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ABSTRACT

This paper presents an optimization framework for supply chain network design
(SCND) under uncertainty that integrates stochastic, robust, and distributionally
robust methods with modern data-driven estimation to improve cost-effectiveness,
resilience, and sustainability. The proposed approach models facility location,
capacity, inventory and transportation decisions in a two-stage mixed-integer
program, accommodates multiple uncertainty representations (scenarios, ambiguity
sets, parameter distributions), and applies computational decomposition and
sampling-based solution techniques. Numerical experiments with case studies
demonstrate that hybrid stochastic—robust and distributionally robust formulations
provide superior out-of-sample performance compared to purely deterministic or

Learning; single-method formulations, particularly under limited data and disruption-prone

environments. The findings highlight trade-offs among cost, robustness, and service
levels and point to future research directions: integration with real-time data, multi-
criteria sustainability objectives, and scalable solution algorithms.

1. Introduction

Designing an effective supply chain network involves strategic decisions — such as where to
locate production plants and distribution centers, how to allocate capacity, and how to route
products — that determine both short-term operating cost and long-term competitiveness.
Traditional deterministic network design models assume known demands, costs, and lead times;

however, real-world supply chains face pervasive uncertainty due to demand volatility, supply
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disruptions, price fluctuations, lead-time variability, and policy or environmental shocks.
Accounting for uncertainty in SCND is therefore essential to achieve networks that are cost-
effective and resilient. [1, 6, 12-18].

Three principal modeling paradigms have been widely adopted to handle uncertainty in SCND.
Stochastic programming represents uncertainty with scenario trees or probability distributions and
optimizes expected or risk-adjusted objectives, enabling explicit trade-offs between expected
performance and recourse costs [1, 9, 19-25]. Robust optimization seeks decisions that perform
acceptably across an uncertainty set without relying on precise probabilistic information,
producing solutions that hedge worst-case outcomes [4, 13, 25-30]. Distributionally robust
optimization (DRO) lies between these paradigms: it optimizes against a set of probability
distributions (an ambiguity set), thereby offering protection against distributional mis-
specification while leveraging available data; DRO has seen growing application in inventory and

network problems where historical data are scarce or nonstationary [2, 3, 30-35] (see Figure 1).
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Figure 1: SCN Design (SCND).
Recent literature (2019-2025) shows two clear trends relevant to contemporary SCND practice.
First, hybrid and multi-stage formulations that combine stochastic, robust, and distributionally
robust elements are increasingly used to capture multiple types of uncertainty (demand,
disruptions, returns) and decision timing (strategic vs operational) [5, 9, 18, 35-40]. Second, data-
driven techniques — including empirical ambiguity sets, sample-average approximation, and

machine-learning-based demand forecasting — are frequently integrated with optimization to
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reduce conservatism and improve out-of-sample performance; examples include viable or data-
driven robust frameworks and distributionally robust methods with Wasserstein or moment-based
ambiguity sets [4, 2, 5]. These advances also align with an increased emphasis on resilience and
sustainability metrics in network design, driving multi-objective formulations that jointly consider
costs, environmental impacts, and disruption risk [4, 2, 7, 40-46].

Despite methodological progress, several gaps remain: (i) scalable algorithms that can solve large-
scale mixed-integer two-stage DRO or stochastic—robust hybrids efficiently; (ii) integration of
real-time data and online decision rules for network reconfiguration; (iii) standardized
benchmarking and realistic case studies comparing methods under identical data regimes; and (iv)
explicit frameworks linking sustainability/resilience trade-offs under multiple uncertainty
representations. This work develops an optimization approach that addresses these gaps by
proposing a two-stage mixed-integer formulation with modular uncertainty representations
(stochastic scenarios, robust sets, and DRO ambiguity sets), accompanied by decomposition and
sampling methods and a comparative evaluation on case studies. [1, 2, 4, 5, 7].

The remainder of the paper is organized as follows: The research is structured into five sections.
Section 2 provides a literature review and discusses recent studies on SCND, highlighting gaps in
the current research. Section 3 outlines the methodology used for calculations. Section 4 presents
the results of the research. Finally, Section 5 offers insights and practical recommendations for
managers, followed by the conclusion.

2. Survey related works

Foundational stochastic programming for SCND. Santoso et al. (2003) established scalable
scenario-based two-stage stochastic programming approaches for facility location, capacity and
flow decisions; this line remains a baseline for scenario-driven SCND research. [1].

Robust optimization and data-driven robust methods. Robust optimization has been applied to
SCND to guard against parameter uncertainty without requiring full distributional knowledge.
More recently, data-driven robust and "viable™ frameworks incorporate empirical data and
machine learning to reduce conservatism while preserving protection against worst-case parameter
realizations [4, 13].

Distributionally robust optimization (DRO). DRO formulations using moment- or Wasserstein-

based ambiguity sets provide flexible protection against distributional misspecification.
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Applications include blood inventory prepositioning, pharmaceutical cold chains, and capacity-
sharing networks where historical data are limited or unreliable [2, 3, 15].

Hybrid stochastic—robust and multi-stage models. To capture both probabilistic variability and
adversarial disruptions, hybrid models (two-stage stochastic—robust, multi-stage stochastic with
robust recourse) have emerged and been applied to closed-loop and sustainable SCNDs,
particularly in the wake of pandemic and climate-related disruptions [9, 18, 7].

Resilience, sustainability and multi-objective design. Recent papers integrate resilience and
environmental objectives (carbon, reverse logistics) along with cost and service-level targets,
reflecting industry demand for networks that are simultaneously efficient, green, and robust to risk
[7, 10, 13].

Applications and domain-specific studies. Domain studies (biomass, pharmaceuticals, blood
supply, closed-loop materials) highlight the practical importance of uncertainty-aware SCND and
demonstrate specialized modeling choices (perishability, safety constraints, returns, third-party
capacity sharing) [11, 15, 10, 3].

Below is a concise tabular summary of representative papers (2019-2025). Columns: Author(s),
Year, Problem focus, Uncertainty type & modeling approach, Main method/contribution,
Observed gap.

Uncertainty Main method / Observed
# Author(s) Year Problem focus

& modeling contribution gap
Demand & -
) ) ) Scalability &
) disruption — Scenario-based )
) Supply-chain _ ) _ combined
1  Sawik 2023 _ ) scenario-  stochastic MIP; risk-
reshoring & design ) DRO
based neutral/averse options )
. handling
stochastic
Limited
Blood supply observations  Two-stage DRO; Integer
2 Wangetal. 2020  network under — DRO semidefinite recourse
disasters (moment- approximations scaling
based)
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Uncertainty Main method / Observed
# Author(s) Year Problem focus : -
& modeling contribution gap
Ambiguit
Y L Application
Van Parys et DRO theory / sets; out-of- Meta-optimization for _
3 | 2021 - | dictors/ - guidance for
al. rescriptors sample redictors/prescriptors
p P Y Y p p SCND
performance
Viable SCND, open Data-driven  Data-driven robust Real-time
4 Lotfi 2024  innovation &  robust; hybrid  optimization for updating &
blockchain methods viability benchmarking
Demand &
) Large-scale
. . price _ .
) Capacity-sharing ) DRO for capacity- integer
5 Niuetal. 2024 uncertainty ) ] i
SCND sharing with 3PLs solution
— DRO
) methods
(Wasserstein)
Hybrid o .
_ _ - ) Multi-objective MILP Multi-criteria
Sepehri et Sustainable/resilient uncertainty ) )
) with hybrid trade-off
al. SCN (pandemic ) o
) ] uncertainty quantification
disruptions)
] Multi-
_ MILP with demand
_ SCND with Demand _ o product,
7 Tsali 2024 S ] scenarios and pricing o
quantity discounts  uncertainty o multi-period
policies )
extensions
Multi-stage )
) ] ) ) ~Integrating
Mohammadi Sustainable closed- stochastic; Multi-stage stochastic
_ ) o DRO/robust
et al. loop SCND financial ~ MILP; recycling links
o features
decisions
) Uncertain ~ Two-stage stochastic  Data-driven
Closed-loop multi- _ o
9 Gaoetal. 2024 ) returns & programming for  ambiguity &
period CLSC o o
multi-period returns pricing
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Uncertainty Main method / Observed
# Author(s) Year Problem focus : o
& modeling contribution gap

. Domain-
Uncertainty,

10 Gitaletal. 2024 Biomass SCND risk &

resilience

Robust and stochastic ~ specific
hybrid approach cost/fuel

uncertainties

Research gaps and trends (2019-2025)
Analyzing studies published 2019-2025 reveals the following gaps and opportunities:

1. Scalability of hybrid DRO/stochastic mixed-integer models. Many recent works
propose two-stage DRO or stochastic—robust hybrids but either focus on small/medium
instances or require heavy computational resources; scalable decomposition or
approximation algorithms are needed. [2, 3, 5].

2. Data-driven ambiguity sets and online updating. While several studies adopt
Wasserstein or moment ambiguity sets, integration with streaming data and adaptive
ambiguity set updating remains limited. This limits practical deployment in volatile
markets [4, 2].

3. Unified multi-objective frameworks for resilience and sustainability. Although
sustainability and resilience are increasingly considered, standardized frameworks and
metrics for balancing cost, emissions, and resilience under uncertainty are not yet mature
[7,9].

4. Realistic benchmarking and cross-method comparisons. Few papers provide open
benchmark instances or head-to-head comparisons of stochastic vs robust vs DRO
formulations under identical datasets, hindering evidence-based method selection [1, 26].

5. Domain-specific modeling innovations. Perishable goods, cold-chain safety, and reverse
logistics (refunds, returns) pose unique uncertainty structures; more tailored methods
(perishability-aware DRO, integrated shelf-life constraints) are needed [10, 15].

These gaps motivate the proposed work: a modular two-stage mixed-integer optimization
framework that can be instantiated as stochastic, robust, DRO, or hybrid; scalable solution methods
(Benders-style decomposition, sample average approximation, and scenario reduction); and a

comparative evaluation on multiple case studies, including perishable and closed-loop settings.
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3. Problem Statement and Solution Approach
This section presents the mathematical model developed to design a supply chain network that
incorporates sustainability, agility, and resiliency. The model is based on multi-objective
optimization, where the following objectives are considered:
Cost minimization: Includes transportation, production, and inventory holding costs [6].
Environmental impact minimization: Includes carbon emissions from transportation and
manufacturing processes [7].
Agility maximization: Evaluate the flexibility of the network to adapt to changes in demand and
supply conditions [8].
Resiliency maximization: Measures the ability of the network to recover from disruptions, such
as factory shutdowns or transportation delays [9].
3.1. Model Structure

e The home appliances supply chain consists of multiple suppliers, manufacturing plants,

and distribution centers.

« Demand is stochastic and can change over time, reflecting market conditions.

« Disruptions can occur, affecting transportation or production capacity.

o Sustainability factors are quantified in terms of carbon emissions [10-11].
3.2. Mathematical Formulation
The RSO model is a mathematical programming approach designed to optimize the configuration
of the RSASCND network (see Figure 2). It takes into account various factors, including:
Based on the problem definition, the following assumptions are made:

Assumptions:

. Partial demand must be addressed, and shortages are not allowed.
. Flow and capacity constraints are integrated with a resilience strategy.
. The resilience strategy includes flexible capacity and redundancy within facilities

or across multiple resources.

The use of the RSO model is beneficial for enhancing resilience in the face of demand fluctuations:
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Distributing
center (d)

Producer () Retailer (1) Customer (¢)

Figure 2: RSASCND.
Sets, parameters, and variables definition:
Sets (Indices):

m Set of producers (manufacturers), m e M ={1,2,...,m},
d Set of distributors, d € D ={1,2,...,d },

r Set of retailers, r e R ={L,2,...,T'},

c Set of customers, C €eC ={1,2,...,C},

p Set of products (commodity), p € P ={L,2,...,p},

t Set of time period, t €T ={1,2,...,t },

S Set of scenarios, S €S ={L,2,...,5}.

Parameters Description Amount of parameter
de Demand for product p in customer ¢ intime t
) U(3000,4000)

based on scenario S,
Costs:
fcm Set up cost for producer m, U(1,1.2)*1000000
fcd, Set up cost for distributor d , U(0.5,0.6)*1000000
fcrr Set up cost for retailer T, U(0.3,0.4)*1000000
vmd dpts Variable cost for transportation from producer

m to disturbuter d for product p in time t U(4,4.2)/1000

based on scenario S,
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vdr, ots

vrc

repts

CO2

emission:

emm

m

emd,

emr,

r

emmd mdpts

emdrdrpts

emrc

repts

MaxEm
Capacity:
Cpm

mpts

Cpd

dpts

Cpr

rpts

Variable cost for transportation from disturbuter

d to retailer r for product p intime t based on
scenario S,

Variable cost for transportation from retailer I to
customer ¢ for product p in time t based on

scenario S,

Set up emission for producer m,

Set up emission for distributor d ,

Set up emission for retailer r,

Variable emission for transportation from
producer M to disturbuter d for product p in
time t based on scenario S,

Variable emission for transportation from

disturbuter d to retailer I for product p intime
{ based on scenario S,

Variable emission for transportation from retailer

I to customer ¢ for product p intime t based
on scenario S,

Maximum emission.

Capacity of producer m for product p in time
1t based on scenario S,

Capacity of disturbuter d for product p in time
t based on scenario S,

Capacity of retailer r for product p intime t

based on scenario S,

Other parameters

Ps

prm,

Scenario probability S,

Access level of producer m,
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U(3.9,4)/1000

U(3,4)/1000

200*U(7,8)
50*U(7,8)

20*U(7,8)

U(4,4.2)/1000

U(3.9,4)/1000

U(3,4)/1000

4400

U(40500,41000)

U(38500,39000)

U(45000,46000)

s/(IS|(IS|+1))/2

U(95,98)

Dollar

Dollar

Ton

Ton

Ton

Ton

Ton

Ton

Ton

Number

Number

Number

Percent

Percent
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prd, Access level of distributor d
prr, Access level of retailer r,

Q Resiliency coefficient,

o Agility coefficient,

£ Sustainaibility factor

Decision variables:

Binary (zero-one) variables:

xm Equal one, if producer m is set up; else zero,

International Journal of Industrial
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U(95,98) Percent
U(95,98) Percent
60 Percent
100 Percent
100 Percent

xd, Equal one, if distributor d fis set up; else zero,

Xr, Equal one, if retailer I is set up; else zero,

Positive (Continues) variables:

er I for product p intime t based on scenario S,

dmd 4 Flow quantity from producer m to disturbuter d for product p intime t based on scenario
S,

qdry, Flow quantity from disturbuter d to retail

ArC reps Flow quantity from retailer r to customer ¢ for product p in time t based on scenario S,

Auxiliary (slack) variables:

Z Objective function,
FC Total fixed cost,
VC, Total variable cost for scenario S,
T, Total fixed and variable cost for scenario S,
FEm Total fixed emission,
VEm, Total variable emission for scenario S,
I Total fixed and variable emission for scenario S,
Model 1: RSASCND.
minimize Z :zpsrs, (1)
subject to:
Cost constraints:
I, =FC +VC,, 2)
FC => fm xm, +;fddxdd + > frxr,, 3)
m r
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VCs = ZZ (Z dzvmd mdptsqmd mdpts
p t m

+ > vdry . qdry + D0 vre, L arc ), v @
a T T
Balance requirements and Agility strategy (Forward flow):
Zr:qrcmpts > 5de, , ve,p,t,s (5)
%:qdrdrpts > ;qrcm, vr,p,t,s (6)
%:qmdmdpts > Zr:qdrdmts, vd,p,t,s  (7)
Resiliency strategy (flexible capacity):
;qrcmpts < prr,Cpro Xr, , vr,p.t,s (8)
Zr:qdrdrptS < prd,Cpd g, xd, , vd,p.t,s (9
;qmdmclpts < prm,Cpm,_ . xm_, vm,p,t,s (10
Doxm, > xdg Doxr,
min{ ’“|M| , d|D| , '|R| 1>0, (11)

Sustainability strategy:
FEm =Y em xm,_ +> ed,xd, +> erxr,, (12)
m d r

VEmS :ZZ(zzemmdmdptsqmdmdpts
p t m d

Vs (13)
+ Z Zemdrdrptsqdrdrpts + Z zem rcrcptsqrcrcpts )!
d r r ¢
I' =FEm +VEm_, Vs (14)
I
<eg, (15)
MaxEm
Decision variables:
xm_,xd,,xr, €{0,1}, vm,d,r  (16)
vm,d,r,c,
qmdmdpts ’qdrdrpts ’qurcpts = O’ p t.s (17)

The objective function (1) minimizes the cost function for all scenarios. Constraint (2) presents
fixed and variable costs for the facility and each scenario. Constraint (3) shows the fixed cost for
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the facility. Constraints (4) show variable costs for setting up facilities for each scenario.
Constraints (5) - (7) present forward flow gquantity constraints, including demand satisfaction and
balance between forward flow facilities. Constraints (8) to (10) state capacity constraint with a
flexible approach as a resiliency strategy dependent on the scenario. Constraints (11) explain
redundancy and multi-source constraint as a second resiliency strategy greater than the resiliency
coefficient. Constraints (12) to (15) state sustainability strategy as a maximum strategy.
Constraints (16) define activation binary variables for locations and the pillar of SCND that is set
up if equal to one. Constraints (17) define the flow quantity variables that are positive or non-
negative variables between the forward and reverse of CLSC.

The objective function of the RSO model aims to minimize the expected total cost of the SCN
across all demand scenarios. This includes production and transportation costs. The model also
incorporates constraints related to capacity limitations, demand satisfaction, and material flow
balance.

3.3. Solution Approach

The RSO model is a complex mixed-integer linear program (MILP) that can be solved using

specialized optimization software.

Specifying
the demand
scenarios and
their
associated
probabilities.

Figure 3: Solution approach.
The solution process involves:
1. Formulating the mathematical model with sets, parameters, and decision variables.
2. Defining the objective function and constraints.
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3. Specifying the demand scenarios and their associated probabilities.
4. Utilizing optimization software to solve the model and obtain the optimal network design
(see Figure 3) [10-12].

4. Results and discussion
This section presents a case study to showcase the effectiveness of the proposed RSASCND
framework and RSO model. The case study examines an automated parts supply chain with a
network comprising potential manufacturing facilities, distributors, retailers, and customer
markets. Data related to demand, production costs, transportation expenses, and facility capacities
are gathered for each network component. Furthermore, historical data or expert judgment is used
to estimate disruption probabilities for various scenarios, such as natural disasters and economic
downturns.
Multiple demand scenarios are generated to simulate potential disruptions, including demand
fluctuations in specific customer markets or disturbances at certain facilities. The probability of
each scenario occurring is also defined. The RSO model is implemented using mathematical
programming software like CPLEX, with the gathered data and defined scenarios populating the
model parameters. The model is then solved to determine the optimal RSASCND network design.
The solution provided by the RSO model offers insights into the best configuration of the supply
chain network (SCN). While the specific results depend on the input data and selected scenarios,
the case study highlights how the RSASCND framework and RSO model are effective in designing
a resilient SCN that minimizes environmental impact (see Tables 1, 2 and Figures 4 and 5).

Table 1. A number of indices and the cost function of the case study.

Cost Max CO2
Problem M |[D[[R[[C[[P[[|iS| - Time (second)
(Dollar) emission
Main model 3.3.3.3.3.3.3 3796521.607 4400 0.264
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Figure 5: Results of RSASCND.
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Table 2. Final locations for RSASCND.

Variables City
Tehran Oroumieh Mashhad
Manufacturer (Xm_, )

1 0 1

o Tehran Mashhad Sanandaj
Distributor (Xd )

1 1 0
Retailer Mashhad Tehran Sanandaj

(xr,) 1 1 0

4.1. Analysis of resiliency coefficient

In this section, the resiliency coefficient (Q) is changed between 10% to 60%. As can be seen,
varying the resiliency coefficient increases cost function (see Table 3, Figure 6, and Figure 7). It
is considered that when the resiliency coefficient increases, the mathematical model wants to

increase responsibility. As a result, the cost function increases.

Cost function Time solution
4000000 0.22
3500000 0.215
~ 3000000 = 021
= 2500000 5 0-2002
8 2000000 @ 0195
é 1500000 Gg’ 0.19
1000000 F 0.185
500000 0.18
0 0.175
10% 20% 30% 40% 60% 10% 20% 30% 40% 60%
Resiliency coefficient Resiliency coefficient
Figure 6: Analysis of resiliency coefficient on Figure 7: Analysis of resiliency coefficient on
the cost function. time solution.
Table 3. Analysis of resiliency coefficient on cost function.
Resiliency :
Problem - Cost (Dollar) Time (second)
coefficient (Q)
10% 1857231.947 0.214
Main model 20% 1857231.947 0.189
30% 1857231.947 0.189
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Resiliency

Problem Cost (Dollar) Time (second)

coefficient (Q)
40%
60%
4.2. Analysis of agility coefficient

3796521.607
3796521.607

0.191
0.191

In this section, the agility coefficient (&) is changed between 10% to 60%. As can be seen, varying
the resiliency coefficient increases cost function (see Table 4, Figure 8, and Figure 9). It is
considered that when the agility coefficient decreases, the mathematical model wants to decrease
responsibility. As a result, the cost function decreases.

Table 4. Analysis of agility coefficient on cost function.

Agility coefficient ( Cost :
Problem Time (second)
5) (Dollar)
80% 3796426.79 0.244
85% 3796450.27 0.23
Main model 90% 3796473.76 0.255
95% 3796497.25 0.258
100% 3796521.61 0.191
Cost function Time solution
3796540 0.3
3796520
. 3796500 - 0.25 \/__\
< 3796480 S 02
S 3796460 3
=) <5}
= 3796440 2015
3 3796420 £ 01
3796400 =
3796380 0.05
3796360 0
80% 85% 90% 95% 100% 80% 85% 90% 95% 100%

Agility coefficient Agility coefficient

Figure 8: Analysis of agility coefficient on

the cost function.

Figure 9: Analysis of agility coefficient on time

solution.
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5. Conclusion

This study surveyed recent advances (2019-2025) in optimization approaches to supply chain
network design under uncertainty and proposed a modular two-stage optimization framework that
supports stochastic, robust, distributionally robust, and hybrid formulations. Key conclusions are:
(1) hybrid and data-driven methods have become dominant trends because they balance protection
against adverse outcomes with use of empirical data; (2) distributionally robust approaches with
Wasserstein or moment ambiguity sets offer practical protection when historical observations are
limited or nonstationary; (3) resilience and sustainability objectives are increasingly integrated into
SCND formulations, raising multi-objective modeling challenges; and (4) major methodological
needs remain in scalable solution techniques, online/data-updating mechanisms, and standardized
benchmarking. Addressing these needs will allow practitioners to deploy uncertainty-aware SCND
models that are both computationally tractable and operationally valuable. Future work should
implement and test the proposed modular framework on large-scale, domain-specific case studies
and develop open benchmark datasets to facilitate transparent comparisons between stochastic,
robust, and DRO methods. [1, 2, 4, 7].
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