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ABSTRACT 

Through extensive numerical experiments, the results indicate that the 

improved qrginv algorithm not only yields a more precise pseudoinverse 

but also significantly reduces computation time compared to existing 

methods. This advancement has practical implications for various 

applications in applied mathematics and computational science, where 

efficient matrix computations are essential. In 2011 Katsikis et al. 

presented a computational method to calculate the Pseudoinverse of an 

arbitrary matrix. In this paper, an improved version of this method is 

presented for computing the Moore- Penrose of a 𝑚 × 𝑛 real matrix A with 

rank 𝑟 > 0. Numerical experiments show that the resulting Moore- Penrose 

matrix is reasonably accurate and its computation time is significantly less 

than that obtained by Katsikis et al. 

1. Introduction 

In recent years, various approaches have been proposed to enhance the computational efficiency 

of obtaining the Moore-Penrose inverse. One notable advancement is the qrginv algorithm, which 

utilizes QR decomposition to compute the pseudo-inverse of matrices. While this method has 

shown promise in reducing computational time compared to traditional SVD methods, there 

remains significant room for improvement, particularly in terms of accuracy and execution speed 

[9]. 
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Let ℝ𝑚×𝑛   denote the set of all 𝑚 × 𝑛 matrices over the field of real numbers, ℝ. The symbols 

𝐴𝑇, rank (𝐴T) will stand for the transpose and rank of 𝐴 ∈ ℝ𝑚×𝑛, respectively. For a matrix 𝐴 ∈ 

ℝ𝑚×𝑛, the Moore-Penrose inverse of 𝐴, denoted by 𝐴T, is the unique matrix 𝑋 ∈ ℝ𝑚×𝑛 satisfying 

the following equations.  

(i) 𝐴𝑋𝐴 = 𝐴 

(ii) 𝑋𝐴𝑋 = 𝑋 

(iii) (𝐴𝑋)T = AX 

(iv) (𝑋𝐴) T = XA 

Many works concerning generalized inverses have been carried out in finite and infinite 

dimensions (e.g., [1–3]). Several methods are available for computing the Moore-Penrose inverse 

matrix [2,4–8].  

In an article [9], an improved method for the computation of the Moore-Penrose inverse matrix is 

provided. In this paper, we aim to improve their method to be used for any kind of matrices, square 

or rectangular, full rank or not. The numerical examples show that our method is competitive in 

terms of accuracy is much faster than the commonly used methods and can also be used for large 

sparse matrices. 

 

Figure 1. Enhancing qrgin algorithm for moore-penrose inverse 

This paper is organized as follows. In Section 2 the improved version of this method is presented 

for computing the pseudoinverse of an 𝑚 × 𝑛 real matrix 𝐴 with rank 𝑟 > 0. In Section 3, the 
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numerical results of some test matrices are given. Section 4 is devoted to the concluding remarks. 

Figure 1 shows the enhancing qrgin algorithm for moore-penrose inverse. 

2. Improved Qrginv Method 

A method (qrginv) for computing the Moore-Penrose inverse of an arbitrary matrix was presented 

in [9]. They made use of the QR-factorization, as well as an algorithm based on a known reverse 

order law for generalized inverse matrices, and also, they apply a method (ginv), presented in [4], 

based on a full rank Cholesky factorization of possibly singular symmetric positive matrices. 

In the current paper, we improved qrginv algorithm using the QR-factorization by Gram-Schmidt 

orthonormalization (GSO) and Theorem 1 for faster computing Moore-Penrose inverse of arbitrary 

matrices (including singular and rectangular). We should note that we invoke ginv algorithm. To 

support and state our achievement we need to remind Gram-Schmidt orthonormalization (GSO) 

and the QR-factorization. 

2.1. The Gram-Schmidt Procedure  

Let us remember a generalization of the Gram-Schmidt orthonormalization process (shortly GSO) 

which is applied for singular matrices. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} ⊆ ℝ𝑚 be a set of vectors spanning 

a subspace 𝑉, this process generates a set of mutually. orthonormal vectors such as 𝑄 =

{𝑞1, 𝑞2, … 𝑞𝑛} ⊆ ℝ𝑚 having the property that Q is an orthonormalization basis for 𝑉. Q is obtained 

using the Gram-Schmidt orthonormalization process (shortly GSO) as follows: 

𝑞1 =
𝑎𝑐1

‖𝑎𝑐1
‖

, 𝑖𝑓  𝑎𝑐1
≠ 0 = 𝑎𝑗       𝑓𝑜𝑟  1 ≤ 𝑗 < 𝑐1,  

�̂�𝑗 = 𝑎𝑗 − ∑(𝑎𝑗, 𝑞𝑖)𝑞𝑖,     𝑗 = 𝑐𝑘−1 + 1, 𝑐𝑘−2 + 2, … , 𝑐𝑘,

𝑘−1

𝑖=1

 

𝑞𝑘 =
�̂�𝑗

‖�̂�𝑗‖
,                          

𝑖𝑓 �̂�𝑐𝑘
≠ 0 = 𝑞𝑗 , 𝑓𝑜𝑟 𝑐𝑘−1 + 1 ≤ 𝑗 < 𝑐𝑘, 𝑘 = 2, … , 𝑟. 

 

(1) 

The integer 𝑟 found by the GSO process is the dimension of the subspace 𝑉. The integers 

{𝑐1, … , 𝑐𝑟} are the indices of a maximal linearly independent subset {𝑎𝑐1
, … 𝑎𝑐1

} of A. 

2.2 The QR-Factorization. 

Let us remember the QR-factorization for arbitrary matrices (including singular and rectangular). 
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Let the orthonormal set {𝑞1, 𝑞2, … , 𝑞𝑟} be obtained from the set of vectors {𝑎1, 𝑎2, … , 𝑎𝑛} by the 

GSO process described in Section 2.1, and let 

�̃� = [𝑞1, 𝑞2, … 𝑞𝑟] ∈ ℝ𝑚×𝑟 , 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑛] ∈ ℝ𝑚×𝑛, (2) 

with rank(𝐴) = 𝑟 > 0, be the corresponding matrices. Then there exist matrices �̃�, 𝑄, and 𝑅 such 

that 

�̃� = 𝐴𝑃 = 𝑄𝑅       (3) 

                                                                                          

 where 

(i) 𝑃 is a permutation matrix (therefore orthonormal); 

(ii) 𝑄 = [𝑄 ̃𝑍] ∈ R𝑚×𝑚, where 𝑄 ̃and 𝑍 denote matrices, whose columns are an orthonormal basis 

of 𝑅(𝐴) and 𝑁(𝐴T), respectively; 

(iii) 𝑅 = [�̅�
0

] ∈ ℝ𝑚×𝑛, where �̃� ∈ R 𝑟×𝑛 is upper triangular matrix with rank (�̃�) = 𝑟. 

One obtains from (3) 

�̃� = [�̃�  𝑍] [
�̃�

0
] = �̃��̃�.                            

 

(4) 

It follows that  �̃�has a   �̃��̃� -factorization. A nonzero matrix can be expressed as the product of a 

matrix of full column rank and a matrix of full row rank. In fact, for given 𝐴 ∈ R 𝑚×𝑛 (rank(𝐴) = 𝑟 

> 0) there exist matrices 𝐹 ∈ R 𝑚×𝑟 and 𝐺 ∈ R 𝑟×𝑛 such that 𝐴 = 𝐹𝐺 [2]. Such factorization, which 

is the so-called a full rank factorization, turns out to be a powerful tool in the study of generalized 

inverses. 

 The following theorem is due to C. C MacDuffe [10] who was the first one to point out that a 

full rank factorization of a matrix 𝐴 leads to an explicit formula for its Moore-Penrose inverse, 

𝐴t. 

Theorem 1. If 𝐴 ∈ R 𝑚×𝑛 matrix, with rank(𝐴) = 𝑟 > 0, has a full rank factorization 𝐴 = 𝐹𝐺, then 

AT = GT(FTAGT)−1FT.                        (5) 
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As a direct consequence of Theorem 1, we have the following. 

Corollary 2. Let 𝐴 ∈ R 𝑚×𝑛, rank(𝐴) = 𝑟 > 0, and Ã=Q̃R̃ be the  Q̃R̃ -factorization of  Ã  .Then 

AT = PT(R̃T)(R̃R̃T)−1Q̃T                           

 

(6) 

Proof. With 𝐴 = �̃�, 𝐹 = �̃�, and 𝐺 = �̃� in Theorem 1 one obtains 

(�̃�)
𝑇

= (𝐴𝑃)T = �̃�𝑇(�̃��̃�T)
−1

𝑄T,                   

 

(7) 

and consequently 

𝐴T = 𝑃�̃�𝑇(�̃��̃�𝑇)
−1

�̃�𝑇                                        

 

(8) 

 

The function IMqrginv 4 provided all implementation details of the above solution, in MATLAB 

code. To calculate the rank of �̃�, one needs only the number of its columns having at least one 

value above a tolerance level in absolute terms. This tolerance is set to be equal to 10-5, which is 

also used by Katsikis et al. [9], and turns out to provide accurate results. 

3. Numerical Examples 

In this section, we compare the performance of the proposed method (IMqrginv function) to that 

of Katsikis et al. [9] for the computation of Moore-Penrose inverse matrices. Testing qrginv and 

IMqrginv was performed separately for random singular and singular matrices with “large” 

condition numbers from the Matrix Computation Toolbox (see [11]). We also tested the proposed 

method for some sparse matrices and obtained very fast and accurate results. Specifically, the 

MATLAb7.11 (R2010b) Service Pack 3 version of the software was used on an Intel Core 2 (Duo) 

8400 Processor running a professional 32-bit operating system. 

3.1. Random Singular Matrices  

We are computing the performance of the proposed method IMqrginv to that of [9] (qrginv 

function). In the same way of [4] we tested on a series of random singular matrices of size 𝑚 × 𝑛, 

with 𝑛 = 2k, k =7…,11, and 𝑚 = 2𝑛, which are rank deficient, with rank 𝑟 =7𝑛/8. In addition, the 

accuracy of the results is examined with the matrix 2-norm in error matrices corresponding to the 

four properties characterizing the Moore-Penrose inverses shown in Table 1. The computation 



Alireza Ataei International Journal of Industrial 

Engineering and Operational Research 
 

48 

error is less than 10-12 per coefficient in the error matrices, in all cases. The computation time (in 

seconds) is reported in Table 1. We observe that the computation time of IMqrginv method is 

substantially less than that of the qrginv method. 

Table 1: Error and Computational Time Results for Random Singular Matrices 

n Method Time ‖𝐴𝐴†𝐴 − 

𝐴‖₂ 

‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

27 qrginv 0.0317 3.4169e-

014 

0.2638e-016 5.7671e-015 3.2645e-015 

 IMqrginv 0.0137 1.6175e-

014 

3.7297e-016 3.0344e-015 2.5228e-015 

28 qrginv 0.1176 1.0052e-

013 

9.9243e-016 8.0286e-015 4.0476e-015 

 IMqrginv 0.0786 2.9804e-

014 

3.4041e-016 3.8500e-015 3.1148e-015 

29 qrginv 1.0584 1.3649e-

013 

1.0186e-015 1.1006e-014 4.9494e-015 

 IMqrginv 0.8236 5.3456e-

014 

5.0122e-015 5.0122e-015 3.8394e-015 

3.2. Singular Matrices 

 In this section we use a set of singular test matrices that includes singular matrices of size 200 × 

200, obtained from the function matrix in the Matrix Computation Toolbox [11] (which includes 

test matrices from Matlab itself). The condition number of test matrices ranges from order 1016 to 

10135. Since the matrices are of relatively small size and to measure the time needed for each 

algorithm to compute the Moore-Penrose inverse accurately, each algorithm runs 100 distinct 

times. The reported time is the mean time over these 100 replications. For each case, the time 

responses together with the error results are presented in Tables 2, 3, 4, 5, 6, 7, 8, and 9. We observe 

that the computation time of IMqrginv method is shorter than the qrginv method for all matrices 

and is proved to be more efficient. 
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Table 2. Error and Computational Time Results for Chow (Rank = 199, Cond = 5.9407e+135) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0376 3.6711e-013 1.7331e-013 4.4765e-013 2.4702e-013 

IMqrginv 0.0187 4.0038e-013 1.7331e-013 2.4448e-013 2.4741e-013 

Table 3. Error and Computational Time Results for Cycol (Rank = 50, Cond = 3.7045e+048) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.2816 1.5114e-013 2.3446e-017 1.1512e-015 8.8889e-016 

IMqrginv 0.2334 8.1308e-014 1.4034e-017 1.0225e-015 8.2643e-016 

Table 4. Error and Computational Time Results for Gearmat (Rank = 199, Cond = 1.8074e+016) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0377 4.6584e-015 3.0532e-013 1.1996e-013 2.1253e-014 

IMqrginv 0.0165 2.8959e-015 3.3357e-013 7.7888e-014 2.1380e-014 

Table 5. Error and Computational Time Results for Kahan (Rank = 199, Cond = 1.9055e+024) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0279 1.9877e-005 4.1177e-009 8.8330e-001 5.4162e-014 

IMqrginv 0.0099 1.9877e-005 3.8389e-009 8.8330e-001 1.0398e-014 

Table 6. Error and Computational Time Results for Lotkin (Rank = 19, Cond = 3.8210e+021) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ ‖(𝐴𝐴†)ᵀ − (𝐴𝐴†)‖₂ ‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0244 8.2512e-006 1.2717e-011 4.4898e-002 3.9689e-009 

IMqrginv 0.0102 8.2512e-006 3.2435e-009 4.4898e-002 1.2636e-011 

Table 7. Error and Computational Time Results for Prolate (Rank = 117, Cond = 4.7489e+017) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ 
‖(𝐴𝐴†)ᵀ − 

(𝐴𝐴†)‖₂ 
‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0276 1.3837e-006 1.2998e-007 4.7715e-002 4.7317e-011 

IMqrginv 0.0138 1.3837e-006 1.1842e-007 4.7715e-002 4.7401e-011 

Table 8. Error and Computational Time Results for Hilb (Rank = 20, Cond = 4.4158e+021) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ 
‖(𝐴𝐴†)ᵀ − 

(𝐴𝐴†)‖₂ 
‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0247 7.7880e-006 1.1444e-008 1.0053e-001 5.5974e-012 

IMqrginv 0.0117 7.7880e-006 1.1184e-008 1.0053e-001 5.5636e-012 
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Table 9. Error and Computational Time Results for Magic (Rank = 3, Cond = 5.3481e+019) 

Method Time ‖𝐴𝐴†𝐴 − 𝐴‖₂ ‖𝐴†𝐴𝐴† − 𝐴†‖₂ 
‖(𝐴𝐴†)ᵀ − 

(𝐴𝐴†)‖₂ 
‖(𝐴†𝐴)ᵀ − (𝐴†𝐴)‖₂ 

qrginv 0.0154 1.5837e-009 4.4922e-009 9.4641e-014 6.3953e-015 

IMqrginv 0.0035 1.4929e-009 4.8349e-009 4.7537e-014 6.0546e-015 

3.3. Matrix-Market Sparse Matrices 

For sparse matrices, we have chosen some matrices from Matrix-Market collection [11]. We 

follow the same method as in [8], and we have the rank deficient matrices as 

𝐴 − 𝑍 = [𝐴      𝑍], (9) 

where 𝐴 is one of the chosen matrices and 𝑍 is a zero matrix of order 𝑚 × 100. The chosen 

matrices with their properties are shown in Table 10. The results of the methods are presented in 

Table 11. We observe that the Moore-Penrose inverses obtained by IMqrginv are reasonably 

accurate in all cases; the computation time required by the IMqrginv method is significantly less 

than the time required by the IMqrginv methods. On the other hand, we can see that the accuracy 

computation of the IMqrginv method is less than the Qrginv method; however, in some cases, the 

accuracy of the results of both methods is low. We can conclude that IMqrginv method is a robust 

and efficient tool for obtaining the Moore-Penrose inverse of large sparse and rank deficient 

matrices. 

Table 10. Test Problem Information 

Matrix\property M N NNZ Cond 

WELL1033 1033 320 4732 Not available 

WELL1850 1850 712 8758 Not available 

ILCC1033 1033 320 4732 Not available 

ILCC1850 10850 712 8758 Not available 

WATT1 1856 1856 11360 5.4e+009 

GR-30-30 900 900 4322 3.8e+002 

ADD20 2395 2395 17319 1.76e+004 

NOSE3 960 960 8402 7.3e+004 

SHERMAN1 1000 1000 3750 2.3e+004 
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Table 11. Error and Computational Time Results for Matrix-Market Sparse Matrices 

Matrix Method Time 
‖𝐴𝐴†𝐴 − 

𝐴‖₂ 

‖𝐴†𝐴𝐴† − 

𝐴†‖₂ 

‖(𝐴𝐴†)ᵀ − 

(𝐴𝐴†)‖₂ 

‖(𝐴†𝐴)ᵀ − 

(𝐴†𝐴)‖₂ 

WELL1033− Z qrginv 0.6277 2.1186e-013 3.6375e-011 1.4406e-011 1.8819e-013 

 IMqrginv 0.3300 3.1283e-014 2.5635e-011 2.4875e-012 9.1501e-014 

WELL1850−Z qrginv 3.8271 1.0218e-012 5.2163e-011 5.6680e-011 3.5487e-013 

 IMqrginv 1.7559 4.0066e-014 6.3726e-012 1.9053e-012 7.7633e-014 

ILCC1033−Z qrginv 0.6119 1.4956e-010 1.1845e-005 1.1674e-006 6.9918e-011 

 IMqrginv 0.3786 2.3305e-011 8.1774e-006 1.5766e-008 5.6012e-010 

ILCC1850−Z qrginv 3.9197 1.9075e-011 1.9254e-008 9.4935e-009 1.1185e-011 

 IMqrginv 1.6791 2.2511e-013 9.5637e-009 1.2945e-010 6.6275e-012 

WATT1−Z qrginv 10.5110 7.1357e-007 1.8762e-005 6.1068 7.4875e-009 

 IMqrginv 3.1018 7.1357e-007 6.4114e-006 6.1068 7.4875e-009 

GR-30-30−Z qrginv 3.1095 2.3077e-011 5.3574e-011 3.5492e-010 3.7356e-013 

 IMqrginv 1.6834 3.2708e-013 1.2685e-011 4.9654e-012 2.3249e-013 

ADD20−Z qrginv 60.9176 2.1032e-008 4.9866e-004 2.7022e-004 1.4014e-008 

 IMqrginv 59.0933 9.3835e-011 2.0676e-005 8.6123e-007 1.0353e-009 

NOSE3−Z qrginv 4.3836 1.6638e-009 2.6309e-009 5.4663e-008 2.1929e-011 

 IMqrginv 3.0214 8.6964e-011 8.4269e-011 9.9464e-010 2.1778e-011 

SHERMAN1−Z qrginv 4.3150 1.0363e-009 4.5703e-007 7.4492e-007 3.0278e-010 

 IMqrginv 1.3069 1.6398e-012 3.2617e-007 1.4722e-009 5.6796e-012 

4. Conclusion 

In this paper we have presented a new method, called IMqrginv, for the fast computation of Moore-

Penrose inverse of singular square, rectangular, full, or sparse matrices. This method is based on 

the GSO method and Theorem 1. Invoking the ginv function we improved qrginv methods 

presented by Katsikis et al. [9]. We have compared the performance of the proposed method 

IMqrginv to the qrginv method. Numerical examples (see Tables 1–9 and 11) show that the 

Proposed method is reasonably accurate, and its computation time is less than that of 

pseudoinverses obtained by the qrginv. Hence, we conclude that the IMqrginv algorithm is a robust 

and efficient tool for computing the Moore-Penrose inverse of arbitrary matrices (including 

singular and rectangular). 
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