

Application of novel and green technology in industry

Afshin Gholamrezaei ^{1*}, Ahmad Reza Shabbooei ², Sanaz Alsadat Ghaferin ³

^{1, 2}Faculty of Petroleum, Abadan Institute of Technology (AIT), Iran,

³Faculty of Computer Science, Islamic Azad University Karaj Branch, Iran.

Article info:

Received: 2023/06/02

Revised: 2023/06/25

Accept: 2023/07/01

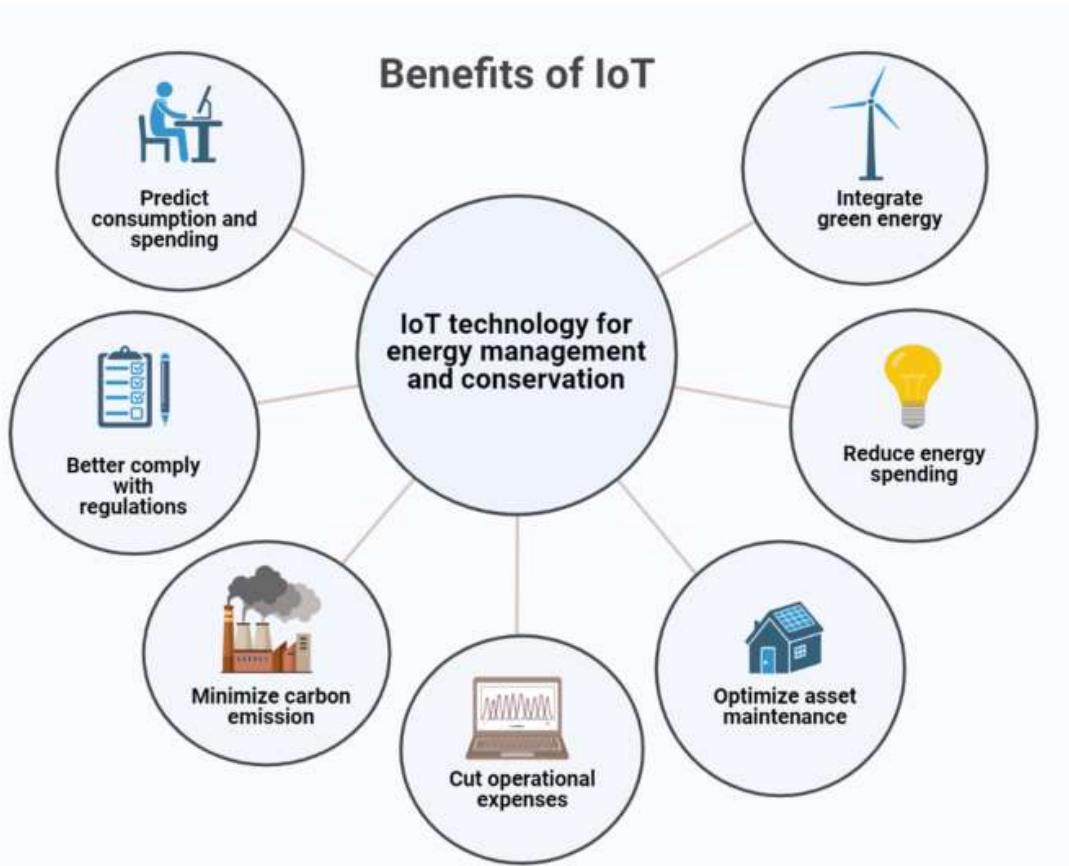
Keywords:

Novel technology, Green
Technology, Industry,
Environment, Challenges.

Abstract

The industrial sector plays a significant role in driving economic growth and meeting the needs of society. However, traditional industrial practices have often been associated with adverse environmental impacts, including pollution, resource depletion, and carbon emissions. To address these challenges, there has been a growing emphasis on the application of novel and green technologies in industrial processes. This paper explores various innovative technologies that are transforming industries towards more sustainable and environmentally friendly practices. It discusses the benefits, challenges, and potential future developments of these technologies.

1. Introduction


The rapid advancements in technology and the pressing need for sustainable development have prompted industries to adopt novel and green technologies. This paper explores the application of such technologies across various industrial sectors, highlighting their potential benefits, challenges, and future prospects. The objective is to shed light on how these innovative solutions can contribute to a greener, more efficient, and sustainable industrial landscape [1].

The industrial sector plays a significant role in driving economic growth and meeting the needs of society. However, traditional industrial practices have often been associated with adverse environmental impacts, including pollution, resource depletion, and carbon emissions. To address these challenges, there has been a growing emphasis on the application of novel and green technologies in industrial processes. This paper explores various innovative technologies that are transforming industries towards more sustainable and environmentally friendly practices. It discusses the benefits, challenges, and potential future developments of these technologies [2].

* Corresponding author email address: jam.sabtt@gmail.com

The industrial sector is undergoing a transformation fueled by the need for sustainable and environmentally conscious practices. Traditional industrial processes often rely on non-renewable resources and generate substantial amounts of waste and greenhouse gas emissions. The application of novel and green technologies offers innovative solutions to minimize the environmental footprint while maintaining productivity and profitability (see Figure 1).

Figure 1: Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future [1].

2. Survey on related works

In recent years, the urgency to address climate change and environmental degradation has fueled a surge in the development and application of novel and green technologies across various industries. These technologies aim to minimize the ecological footprint of industrial processes while promoting sustainable practices and resource conservation. In this comprehensive article, we will explore the wide-ranging applications of novel and green technologies in diverse sectors, including energy, manufacturing, transportation, agriculture, and waste management. By harnessing the potential of these innovative solutions, industries can not only reduce their environmental impact but also enhance operational efficiency and profitability [3].

Novel and green technologies in the industry refer to innovative and environmentally friendly approaches that are being adopted to reduce the ecological impact of industrial processes. These technologies aim to minimize resource consumption, decrease emissions, promote sustainability, and mitigate climate change. Here are a few examples:

Renewable Energy Sources: Industries are increasingly transitioning from fossil fuels to renewable energy sources such as solar, wind, and hydroelectric power. Installing solar panels, wind turbines, and utilizing other clean energy alternatives can reduce greenhouse gas emissions and dependence on non-renewable resources [4].

Energy Efficiency: Implementing energy-efficient practices and technologies is crucial for industries. This includes optimizing processes, upgrading equipment with energy-saving features, and using advanced monitoring systems to identify energy wastage and improve efficiency.

Waste Minimization and Recycling: Industrial processes often generate significant amounts of waste. Novel technologies focus on minimizing waste generation through improved manufacturing techniques, recycling and reusing materials, and implementing circular economy principles to ensure resources stay in use for longer [5].

Sustainable Materials: The industry is exploring alternative materials that have lower environmental impacts throughout their life cycle. This includes the use of biodegradable or compostable plastics, bio-based materials, and sustainable substitutes for traditional products like packaging materials, construction materials, and textiles.

Water Conservation: Water scarcity is a growing concern globally. Industries are adopting water-saving technologies such as efficient filtration and purification systems, closed-loop water systems, and wastewater treatment and reuse methods to minimize water consumption and pollution.

Green Transportation: Industries are embracing eco-friendly transportation options to reduce carbon emissions. This includes using electric vehicles (EVs) for logistics, implementing efficient supply chain management systems, and exploring alternative fuel sources like hydrogen.

Internet of Things (IoT) and Smart Systems: IoT technology allows industries to optimize operations by collecting and analyzing real-time data. Smart systems enable precise control over

energy usage, production processes, and resource allocation, resulting in reduced waste and improved efficiency [6].

Carbon Capture and Storage (CCS): CCS technologies capture carbon dioxide emissions from industrial processes and store them underground or utilize them for various purposes such as enhanced oil recovery or the production of synthetic fuels, thereby reducing emissions released into the atmosphere.

These are just a few examples of novel and green technologies being adopted in various industries. The ongoing advancements and innovations in these areas hold great promise for creating a more sustainable and environmentally conscious industrial sector.

3. Results and discussion

One of the key areas where green technology is making a significant impact is through the integration of renewable energy sources. Solar, wind, hydro, and geothermal power are being harnessed to replace fossil fuel-based energy systems. By transitioning to renewable energy, industries can reduce their carbon emissions and dependence on finite resources, leading to a more sustainable and resilient energy infrastructure (see Figure 2).

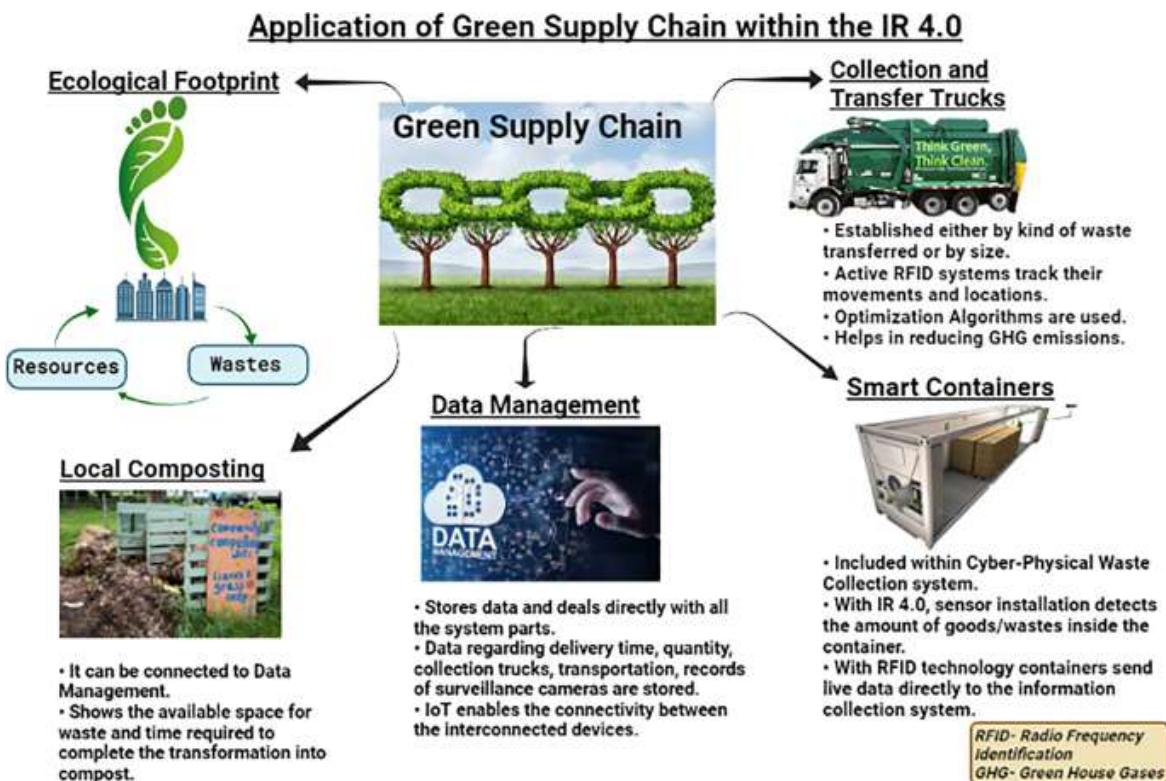


Figure 2: Application of novel and green technology in industry [1].

Energy Efficiency:

Improving energy efficiency is another crucial aspect of adopting green technology in the industrial sector. Advanced automation, intelligent sensors, and data analytics enable real-time monitoring and optimization of energy usage. Energy-efficient manufacturing processes and equipment not only reduce operational costs but also contribute to a greener industrial ecosystem by minimizing energy wastage.

Waste Management and Recycling:

Industrial activities generate vast amounts of waste, which can be detrimental to the environment if not managed properly. Novel technologies such as advanced recycling techniques, waste-to-energy conversion systems, and circular economy principles are helping industries achieve zero-waste goals. These technologies facilitate the recovery of valuable materials from waste streams, minimizing landfill usage and conserving resources [6].

Sustainable Materials and Green Chemistry:

The development and utilization of sustainable materials and green chemistry principles are transforming the industrial landscape. Environmentally friendly materials, such as biodegradable polymers, bio-based composites, and nanomaterial, are replacing traditional counterparts with reduced environmental impacts. Green chemistry practices aim to minimize the use of hazardous substances, optimize chemical processes, and promote eco-friendly alternatives.

Smart Manufacturing and Industrial IoT:

The advent of smart manufacturing and the Industrial Internet of Things (IIoT) has revolutionized the industrial sector. By integrating intelligent sensors, data analytics, and automation, industries can optimize production processes, reduce waste, and enhance resource efficiency. IIoT enables real-time monitoring of equipment performance, predictive maintenance, and supply chain optimization, leading to increased productivity and sustainability [7].

Water Conservation and Management:

Water scarcity is a pressing issue globally, and industries are recognizing the need for responsible water management. Novel technologies like advanced water treatment systems, water recycling, and efficient irrigation techniques help industries minimize water consumption, reduce pollution,

and protect aquatic ecosystems. These technologies enable sustainable water use while ensuring uninterrupted industrial operations.

Carbon Capture and Reduction:

Green technology offers solutions for mitigating industrial carbon emissions through carbon capture and reduction techniques. Carbon capture and storage (CCS), along with carbon offset projects, play a vital role in decarbonizing industrial processes. Furthermore, innovative approaches such as bioenergy with carbon capture and utilization (BECCU) have the potential to convert carbon emissions into valuable products, fostering a circular carbon economy [8].

Challenges and Future Outlook:

While the application of novel and green technology in industry brings numerous benefits, there are challenges to overcome. These include high initial costs, technological barriers, regulatory frameworks, and transitioning from traditional practices. However, continuous advancements and supportive policies are expected to drive wider adoption in the future. The integration of emerging technologies like artificial intelligence, blockchain, and quantum computing could further enhance the sustainability and efficiency of industrial processes [9, 10].

4. Conclusion:

The application of novel and green technology in the industrial sector holds immense potential for sustainable development. Renewable energy integration, energy efficiency improvements, waste management, sustainable materials, smart manufacturing, water conservation, and carbon reduction are key areas where innovative technologies are driving positive change. By embracing these technologies, industries can create a greener, more economically viable, and socially responsible future. It is imperative to collaborate across sectors, foster innovation, and enact supportive policies to accelerate the transition towards a sustainable industrial ecosystem.

References:

- [1] Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S., & Gopalakrishnan, A. V. (2022). Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. *Environmental Science and Pollution Research*, 1-32.
- [2] Ikram, M., Sroufe, R., Awan, U., & Abid, N. (2021). Enabling progress in developing economies: A novel hybrid decision-making model for green technology planning. *Sustainability*, 14(1), 258.
- [3] Billatos, S. (1997). *Green technology and design for the environment*. CRC Press.
- [4] Lee, C. C., Qin, S., & Li, Y. (2022). Does industrial robot application promote green technology innovation in the manufacturing industry?. *Technological Forecasting and Social Change*, 183, 121893.

[5] Lin, B., & Ma, R. (2022). Green technology innovations, urban innovation environment and CO₂ emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model. *Technological Forecasting and Social Change*, 176, 121434.

[6] Lotfi, R., Kargar, B., Gharehbaghi, A., Hazrati, H., Nazari, S., & Amra, M. (2022). Resource-constrained time-cost-quality-energy-environment tradeoff problem by considering blockchain technology, risk and robustness: a case study of healthcare project. *Environmental Science and Pollution Research*, 29(42), 63560-63576.

[7] Lotfi, R., Safavi, S., Gharehbaghi, A., Ghaboulian Zare, S., Hazrati, R., & Weber, G. W. (2021). Viable supply chain network design by considering blockchain technology and cryptocurrency. *Mathematical problems in engineering*, 2021, 1-18.

[8] Javed, A., Rapposelli, A., Khan, F., & Javed, A. (2023). The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations. *Technological Forecasting and Social Change*, 191, 122534.

[9] Kannan, D., Solanki, R., Darbari, J. D., Govindan, K., & Jha, P. C. (2023). A novel bi-objective optimization model for an eco-efficient reverse logistics network design configuration. *Journal of Cleaner Production*, 394, 136357.

[10] Kineber, A. F., Oke, A. E., Hamed, M. M., Rached, E. F., & Elmansoury, A. (2023). Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method. *Mathematics*, 11(3), 504.